SRI KRISHNA ARTS AND SCIENCE COLLEGE

An Autonomous College Affiliated to Bharathiar University Re-Accredited by NAAC with 'A' Grade Coimbatore -641 008, Tamil Nadu, India.

CBCS & OBE

Scheme of Instruction and Syllabus for **B.Sc. Electronics and Communication Systems**

Effective from the Academic Year 2019-20 and onwards

DEPARTMENT OF ELECTRONICS AND COMMUNICATION SYSTEMS

SRI KRISHNA ARTS AND SCIENCE COLLEGE COIMBATORE - 641008

DEPARTMENT OF ELECTRONICS AND COMMUNICATION SYSTEMS

I. Vision

The vision of the college FITNESS FOR PURPOSE is achieved by

- Preparing students for placements both during and outside the course work
- Strengthening the research activities in the departments
- Encouraging the consultancy and extension services involving students and faculty
- Creating a brand equity and brand image by carrying out activities with the motto 'KNOWLEDGE, LOVE AND SERVICE'

II. Mission

The mission of the college is to prepare both boys and girls for the pressing demands of tomorrow keeping in mind the need to shape and mould a generation of young men and women with knowledge, character, true and genuinely cultivated spirit of service and farreaching imagination.

III. Program Educational Objectives (PEOs)

The graduates of the Sri Krishna Arts and Science College will

- PEO 1: Take an active role and participate in their continuous professional development including graduate studies when appropriate to their career goals
- PEO 2: Maintain ethical and professional standards in their careers
- PEO 3: Practice the domain knowledge in the application oriented discipline

IV. Program Outcomes (POs)

The graduates of the Sri Krishna Arts and Science should have

- PO 1: An ability to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, and sustainability
- PO 2: An ability to function on multidisciplinary teams
- PO 3: An understanding of professional and ethical responsibility
- PO 4: An ability to communicate effectively
- PO 5: A recognition of the need for, and an ability to engage in life-long learning
- PO 6: A knowledge of contemporary issues
- PO7: An ability to apply the acquired knowledge in Electronics and Communication Systems

V. Graduate Attributes/Skills

The graduates of Sri Krishna Arts and Science College provided opportunity to develop

GA 1: Communication Skills

GA 2: Conceptual Skills

GA 3: Analytical Skills

GA 4: Competitive Skills

GA 5: Managerial Skills

GA 6: Technical Skills

VI. Mapping of PEOs, POs and GAs

PEO-PO Mapping

	Program Objectives (POs)												
PEOs	3 - High Correlation; 2 - Medium Correlation; 1-Low Correlation												
	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO												
PEO 1	3	2	1	3	3	3	2						
PEO 2	3	2	3	3	2	3	3						
PEO 3	2	3	2	2	2	3	3						

PO-GA Mapping

	Graduate Attributes (GAs)											
POs		3 - High Correlation; 2 - Medium Correlation; 1- Low Correlation										
	GA1	GA2	GA3	GA4	GA5	GA6						
PO 1	3	2	3	3	3	2						
PO 2	3	2	3	3	3	2						
PO 3	1	3	3	2	1	1						
PO 4	3	2	3	3	2	2						
PO 5	2	2	2	1	1	2						
PO 6	2	3	2	3	2	3						
PO 7	2	3	3	3	1	3						

SRI KRISHNA ARTS AND SCIENCE COLLEGE

An Autonomous College affiliated to Bharathiar University Coimbatore - 641 008, Tamil Nadu, India.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION SYSTEMS SCHEME OF EXAMINATION – CBCS PATTERN

Programme: B.Sc. Electronics and Communication Systems (Effective from the Academic Year 2019-20)

Curriculum Structure, Credits & Marks Distribution

Part	Course Type	Number of Courses	Credits per Course	Total Credits	Marks	Semester
I	Tamil/Hindi/ Malayalam/ French	2	3	6	200	I & II
II	English	2 3		6	200	I & II
	Discipline Specific Courses (DSC)		4.6	06	2200	I to VI
III	Discipline Specific Elective Courses (DSE)	4	4-6	96	2200	IV to VI
	Generic Elective Courses (GEC)	4	4	16	400	I to IV
IV	Ability Enhancement Compulsory Courses (AECC)	2	2	4	100	I & II
	Skill Enhancement Courses (SEC)	4	3	12	400	III & VI
	Non Credit Courses (NCC)	3	-	-	-	IV to VI
V	Non CGPA Credit Course (NCCC) Any one MOOC offered in SWAYAM/NPTEL online portal	1	3	3	-	I to VI
	Total		143	3500		

	Semester I											
Course		T /	Ins.	MAP	Examination							
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits			
19TLU01	Tamil-I/	T	5	A	3	25	75	100	3			
19HLU01	Hindi-I/											
19MLU01 19FLU01	Malayalam-I/ French-I											
19112001	English-I	Т	5	A	3	25	75	100	3			
19ELU01	English for Excellence	_					, .	100				
	DSC-I	T	6	С	3	25	75	100	5			
19ECU01	Basic Electronics and Network											
	Analysis											
	DSC Practical-I	P	3	L	3	20	30	50	2			
19ECU02	Basic Electronics Lab											
	DSC Practical-II	P	3	L	3	20	30	50	2			
19ECU03	Network Analysis Lab											
	GEC-I	T	6	I	3	25	75	100	4			
19GEU07	Mathematics - I											
	AECC-I	T	2	С	-	50	-	50	2			
19AEU01	Environmental Studies											
	Total		30					550	21			

Semester II										
Course		T /	Ins.	MAP		Exami	ination			
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits	
19TLU02	Tamil-II/	T	5	A	3	25	75	100	3	
19HLU02	Hindi-II/									
19MLU02	Malayalam-II/									
19FLU02	French-II									
	English-II	T	5	A	3	25	75	100	3	
19ELU02	Campus to Corporate									
	DSC-II	T	6	С	3	25	75	100	5	
19ECU04	Electronic Devices and									
	Circuits									
	DSC Practical-III	P	3	L	3	20	30	50	2	
19ECU05	Electronic Devices Lab									
	DSC Practical-IV	P	3	L	3	20	30	50	2	
19ECU06	Electronic Circuits Lab									
	GEC-II	Т	6	I	3	25	75	100	4	
19GEU08	Mathematics - II									
	AECC-II: Elective	Т	2	С	-	50	-	50	2	
19AEU02A	General Awareness/									
19AEU02B	Human Rights/									
19AEU02C	Women's Rights/									
19AEU02D	Yoga for Human Excellence/									
19AEU02E	Indian Culture and Heritage/									
19AEU02F	Introduction to Cyber									
	Security/									
19AEU02G	Consumer Protection/									
19AEU02H	Constitution of India/									
19AEU02I	Waste Management/									
19AEU02J	Basic Tamil/									
19AEU02K	Advanced Tamil									
	Total		30					550	21	

	Semester III											
Course		T /	Ins.	MAP	Examination							
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits			
	DSC-III	T	5	C	3	25	75	100	5			
19ECU07	Communication Electronics											
	DSC-IV	T	5	C	3	25	75	100	4			
19ECU08	Integrated Circuits and Instrumentation											
	DSC-V	Т	5	С	3	25	75	100	4			
19ECU09	Digital Electronics and VHDL											
	DSC Practical-V	P	3	L	3	20	30	50	2			
19ECU10	Linear Integrated Circuits Lab											
	DSC Practical-VI	P	3	L	3	20	30	50	2			
19ECU11	Digital Electronics and VHDL											
	Lab											
	GEC-III											
19GEU38	C Programming and Data	T	4	D	3	15	45	60	3			
	Structures											
19GEU39	C Programming and Data	P	2	M	2	15	25	40	1			
100551110	Structures Lab /	_	,	_					2			
19GEU40	Python Programming	T	4	D	3	15	45	60	3			
19GEU41	Python Programming Lab	P	2	M	2	15	25	40	1			
	SEC-I	-	3	-	-	100	-	100	3			
	Non Major Elective Course											
	(EDC)											
	Total		30					600	24			

Semester IV											
Course		T /	Ins.	MAP		Exam	inatio	1			
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits		
19ECU12	DSC-VI Microwave and Fiber Optic Communication Systems	Т	5	С	3	25	75	100	5		
19ECU13	DSC-VII 8051 Microcontroller and Applications	Т	5	D	3	25	75	100	4		
19ECU14	DSC Practical-VII Communication Electronics Lab	P	3	L	3	20	30	50	2		
19ECU15	DSC Practical-VIII		3	M	3	20	30	50	2		
	DSE-I										
19ECU16A	Programmable Logic Controller/	T	5	D	3	25	75	100	4		
19ECU16B	Biomedical Instrumentation	T	5	D	3	25	75	100	4		
19GEU44 19GEU45	GEC-IV Internet and Java Programming Internet and Java Programming	T P	4 2	D M	3 2	15 15	45 25	60 40	3		
19GEU36	Lab / DBMS	Т	4	D	3	15	45	60	3		
19GEU30 19GEU37	DBMS Lab	P	2	M	2	15	25	40	1		
19SEU02	SEC-II English for Competitive Examination	T	3	C	3	100	-	100	3		
Total 30 600 24									24		

Semester V											
Course		T /	Ins.	MAP		Exami	nation				
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits		
19ECU17A	DSE-IET Industrial Exposure Training	-	8-10 Weeks	О	-	50	150	200	8		
1,2561,11	OR										
DSE-II & III											
19ECU17B	Internet of Things	T	5	C	3	25	75	100	4		
19ECU17C	Artificial Intelligence	T	5	C	3	25	75	100	4		
				AND							
	DSC-VIII	T	6	D	3	25	75	100	5		
19ECU18	Embedded Systems with PIC										
	DSC-IX	T	5	Н	3	25	75	100	4		
19ECU19	Robotics and Arduino										
	Programming										
	DSC Practical-IX	P	3	M	3	20	30	50	2		
19ECU20	Embedded Systems with PIC										
	Lab		_								
100001101	DSC Practical-X	P	3	M	3	20	30	50	2		
19ECU21	Robotics and Arduino										
	Programming Lab		-	-		100		100			
10051101	SEC-III	T	3	I	3	100	-	100	3		
19SEU01	Mathematics for Competitive										
	Examination NCC-I				2			Pass			
19ECU22	On-line Test	-	-	-	2	-	-	Pass	-		
19ECU22								C 1 .			
100011224	NCC-II: Elective	-	-	-		-	-	Comple	-		
19ECU23A 19ECU23B	Industrial Internship Training/							ted			
19ECU23B 19ECU23C	Mini Project/ Spoken Tutorial/										
19ECU23C	Drive Through Course										
171.002310	Total		30					600	24		

	Semester VI											
Course		T /	Ins.	MAP		Exami	nation					
Code	Course Title	P	Hrs/ Week	Code	Dur. Hrs	CIA	ES	Total Marks	Credits			
	DSC-X	T	5	Н	3	25	75	100	5			
19ECU24	Modern Communication											
	Systems											
	DSC-XI	T	5	Н	3	25	75	100	4			
19ECU25	Computer Networks											
	DSC-XII	T	5	D	3	25	75	100	4			
19ECU26	Industrial and Power											
	Electronics											
	DSC Practical-XI	P	3	M	3	20	30	50	2			
19ECU27	Industrial and Power											
	Electronics Lab											
	DSC Practical-XII	P	3	L	3	20	30	50	2			
19ECU28	Modern Communication											
	Systems Lab											
	DSE-IV	-	6	N	-	25	75	100	6			
19ECU29	Project (Dissertation)											
	SEC-IV: Elective											
19ECU30A	Mobile Application	T	3	Н	3	25	75	100	3			
	Development /											
19ECU30B	PC Hardware and	T	3	D	3	25	75	100	3			
	Troubleshooting											

	NCC-III: Extension	-	-	-	-	-	-	Comple	-
	Activities - Elective							ted	
19NCU01A	National Service Scheme /								
19NCU01B	National Cadet Corps /								
19NCU01C	Youth Red Cross /								
19NCU01D	Red Ribbon Club /								
19NCU01E	Rotaract Club /								
19NCU01F	Sports /								
19NCU01G	Association Activities								
	Non CGPA Credit Course	-	-	-	-	-	-	Comple	3
	(NCCC)							ted	
	Any one MOOC offered in								
	SWAYAM/NPTEL online								
	portal								
	Total					·		600	26+3
Total								3500	140+3

Descriptions and Regulations

1. Discipline Specific Courses (DSC)

These courses are to be studied compulsorily by the students as a core requirement. The students are required to take DSCs across six semesters. The courses designed under this category aim to cover the basics that a student is expected to imbibe in the particular discipline. The students should study minimum of 12 courses in this category.

	DSC Theory		DSC Practical
1.	Basic Electronics and Network Analysis	1.	Basic Electronics Lab
2.	Electronic Devices and Circuits	2.	Network Analysis Lab
3.	Communication Electronics	3.	Electronic Devices Lab
4.	Integrated Circuits and Instrumentation	4.	Electronic Circuits Lab
5.	Digital Electronics and VHDL	5.	Linear Integrated Circuits Lab
6.	Microwave and Fiber Optic	6.	Digital Electronics and VHDL Lab
	Communication Systems	7.	Communication Electronics Lab
7.	8051 Microcontroller and Applications	8.	8051 Microcontroller and Applications Lab
8.	Embedded Systems with PIC	9.	Embedded Systems with PIC Lab
9.	Robotics and Arduino Programming	10.	Robotics and Arduino Programming Lab
10.	Modern Communication Systems	11.	Industrial and Power Electronics Lab
11.	Computer Networks	12.	Modern Communication Systems Lab
12.	Industrial and Power Electronics		

2. Discipline Specific Elective Courses (DSE)

Discipline Specific Elective courses offered under the main discipline of study which may be specialized or advanced or supportive to the discipline of study. A student will choose four DSE courses related to his/her subject in the IV, V and VI semesters.

- 1. DSE-I (Any one)
 - a) Programmable Logic Controller
 - b) Biomedical Instrumentation
- 2-3. IET (or) any two DSE courses

Industrial Exposure Training (IET): Students can opt for Industrial Exposure Training during fifth semester for a period of 8-10 weeks; in such case two courses, DSE-II & DSE-III will be exempted. Marks for the Industrial Exposure Training will be given based on the report and viva-voce examination conducted by the Department.

DSE-II & DSE-III

- a) Internet of Things
- b) Artificial Intelligence

4. Project (Dissertation)

During the sixth semester students should undertake a project work and submit the report. A guide will be allotted to each group of students (not exceeding four members in a group) by the Department. The project should be demonstrated at the time of viva-voce examination.

Internal Evaluation & Marks

CIA - 25 Marks

(First Review - 10 Marks, Second Review - 10 Marks & Work Dairy - 5 Marks)

External Evaluation & Marks

ES - 75 Marks (Dissertation - 50 Marks & Viva-voce - 25 Marks)

3. Generic Elective Courses (GEC)

Generic Elective Courses are the inter-disciplinary courses with an intention to seek exposure beyond discipline of choice. The students are required to study four of them during the first and second year.

- 1. Mathematics I
- 2. Mathematics II
- 3. a) C Programming and Data Structures
 - b) C Programming and Data Structures Lab
- 4. a) Python Programming
 - b) Python Programming Lab
- 5. a) Internet and Java Programming
 - b) Internet and Java Programming Lab
- 6. a) DBMS
 - b) DBMS Lab

The list of GECs offered by ECS Department

					Ins.						
Offered to	SEM	Course Code	Course Title	T/P	Hrs/ Week	MAP Code	Dur. Hrs	CIA Marks	ES Marks	Total Marks	Credits
B.Sc. (Cog)	III	19GEU47	Physics for Computer Science	Т	5	Н	3	25	75	100	4
B.Sc. (IT) B.Sc. (CT)		19GEU48	Embedded Systems	Т	5	Н	3	25	75	100	4
B.Sc. (CS) B.Sc. (CSA) B.Sc. (SS)	IV	19GEU49	Robotics and Applications	Т	5	Н	3	25	75	100	4
B.Sc. (Cog) BCA		19GEU50	PC Hardware	Т	5	Н	3	25	75	100	4

4. Ability Enhancement Compulsory Courses (AECC)

An Undergraduate Programme degree may be awarded if a student completes TWO Ability Enhancement Compulsory Courses during semester I and II. These courses aim to enhance the knowledge on Environmental Education and multidimensional understanding of the various topics for the sustainable development of India.

- 1. Environmental Science
- 2. Elective Course (Any One)
 - o General Awareness
 - o Human Rights
 - o Women's Rights
 - Yoga for Human Excellence
 - o Indian Culture and Heritage
 - o Introduction to Cyber Security
 - o Consumer Protection
 - o Constitution of India
 - o Basic Tamil
 - Advanced Tamil

5. Skill Enhancement Courses (SEC)

Skill Enhancement Courses are value-based and/or skill-based and should contain theory/lab/hands-on training/fieldwork, etc to enhance students' employability. A student shall have to study FOUR courses during Semester III to IV (one course in each semester).

1. Extra Departmental Course (EDC)

Extra Departmental Course is an inter-disciplinary elective course designed to facilitate horizontal movement. Students shall choose any one compulsory EDC offered by other Departments in the third semester.

The EDC offered by ECS Department

Course Code	Course Title	T/ P	Ins. Hrs/ Week	Map Code	CIA Marks	ES Marks	Total Marks	Credits
19SEC09	PC Hardware, Installation and Troubleshooting	Т	3	D	100	-	100	3

- 2. English for Competitive Examination
- 3. Mathematics for Competitive Examination
- 4. Value Added Courses: (Department shall offer value added courses based on their expertise, specialization, requirements, scope and need.)
 - a) Mobile Application Development /
 - b) PC Hardware and Troubleshooting

6. Non Credit Courses (NCC)

Non Credit Courses are intended for students who want to gain general knowledge, learn a new skill, upgrade existing skills, enrich their understanding of a wide range of topics, or develop personal interests. A student shall have to take THREE courses during Semester V and VI.

1. On-line Test

Online Test will be conducted at the end of the fifth semester. Hundred multiple choice questions will be asked from core courses.

- 2. Industrial Internship Training / Mini Project/ Spoken Tutorial/ Drive Through Course Students individually or with maximum of four members per batch should take up either Industrial internship or Mini Project for a period of fifteen days during the IV semester summer vacation. The report will be evaluated and viva-voce examination will be conducted during fifth semester by the Department. Otherwise, they have to complete one Spoken Tutorial or a Drive Through Course suggested by the Department.
- 3. Extension Activities: National Service Scheme / National Cadet Corps / Youth Red Cross / Red Ribbon Club / Rotaract Club / Sports / Association Activities

7. Non CGPA Credit Courses (NCCC)

These courses are intended to bring out and promote the self-learning initiative of the students – where their own motivation is what drives them to complete the course and not external compulsions. This fosters the habit of keeping oneself updated always by means of self-study. It gives the students the opportunities to explore new areas of interest and earn additional credits. Students can take any number of courses under this cafeteria system, three credits will be given on completion of each course. The credits will not be taken for CGPA calculation.

1. Compulsory Non CGPA Credit Course

Any one MOOC shall be completed anytime during the programme, offered in SWAYAM/NPTEL online portal under MHRD, Govt. of India. The course must be of minimum 4 weeks duration.

2. Additional Non CGPA Credit Courses

a) MOOC: Apart from completing one compulsory MOOC, students can take any number of online courses offered in SWAYAM/NPTEL online portal and earn additional credits. When a student take

more number of online courses, the first course will be taken for compulsory MOOC and for the subsequent MOOCs additional credits will be given in the same semester upon clearing the exam and submitting certificate at least 15 days before the release of semester examination results.

b) Additional Credit Courses (ACC): The College will release list of additional credit courses of self-study nature during every semester. Upon clearing the exam three additional credits will be given for each ACC.

Bloom's Taxonomy Levels and Verbs

I.	II.	III.	IV.	V.	VI.
Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
Exhibit memory	Demonstrate	Solve problems	Examine and	Present and	Compile informati
of previously	understanding of	to new situations	break	defend opinions	on together in a
learned material	facts and ideas by	by applying	information into	by making	different way
by recalling facts,	organizing,	acquired	parts by	judgments about	by combining
terms, basic	comparing,	knowledge,	identifying	information,	elements in a
concepts, and	translating,	facts, techniques	motives or causes.	validity of	new pattern or
answers.	interpreting,	and rules in a	Make inferences	ideas, or quality	proposing alternat
	giving descriptions,	different way.	and find evidence	of work based on	ive solutions.
	and stating main		to support	a set of criteria.	
Classic	ideas. Choose	A 1	generalizations.	A	A 14
Choose Define	Classify	Apply Build	Advertise Analyze	Agree Appraise	Adapt Arrange
Describe	Compare	Calculate	Appraise	Assess	Assemble
Draw	Convert	Carry out	Assume	Assess	Build
Find	Contrast	Classify	Categorize	Choose	Change
How	Demonstrate	Choose	Classify	Compare	Choose
Identify	Describe	Construct	Calculate	Conclude	Combine
Label	Determine	Demonstrate	Correlate	Criteria	Compile
List	Differentiate	Develop	Criticize	Criticize	Compose
Locate	Discriminate	Dramatize	Compare	Decide	Construct
Match	Discuss	Employ	Conclusion	Deduct	Collect
Name	Explain	Execute	Contrast	Defend	Create
Omit	Express	Experiment	Discover	Determine	Delete
Recall	Extend	with	Dissect	Disprove	Design
Recognize	Give	Generalize	Diagnose	Discuss	Develop
Record	Identify	Identify	Deduce	Estimate	Discuss
Recite	Illustrate	Illustrate	Debate	Evaluate	Elaborate
Reproduce	Infer	implement	Detect	Explain	Estimate
Relate	Interpret	Interpret	Determine	Importance	Formulate
Select	Locate	Initiate	Diagram	Influence	Happen
Show	Outline	Interview	Differentiate	Interpret	Imagine
Spell	Practice	Make use of	Draw	Judge	Improve
State	Pick	Manipulate	Distinguish	Justify	Invent
Tell Underline	Predict	Modify Model	Divide Examine	Mark	Manage
What	Recognize Relate	Organize	Estimate	Measure Opinion	Make up Maximize
When	Rephrase	Operate	Evaluate	Perceive	Minimize
Where	Restate	Operationalize	Explain	Prioritize	Modify
Which	Respond	Plan	Function	Prove	Original
Who	Review	Practice	Identify	Rate	Originate
Why	Restate	Produce	Inference	Recommend	Plan
Write	Select	Relate	Infer	Revise	Prepare
	Simulates	Schedule	Inspect	Rule on	Predict
	Show	Select	Inventory	Select	Propose
	Summarize	Solve	Investigate	Score	Reconstruct
	Tell	Translate	Inspect	Support	Set-up
	Translate	Use	List	Test	Solution
	Use of	Utilize	Motive	Value	Solve
			Predict	Verify	Suppose
			Relations		Synthesize
			Relate		Systematize
			Simplify		Test
			Solve		Theory
			Subdivide		
			Survey		
			Take part		
			Test for		
			Theme		

(Anderson, L. W. and Krathwohl, D. R., et al (Eds.) (2001) A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Allyn & Bacon. Boston, MA)

MODULAR ASSESSING PANEL

PERCENTAGE OF COMPONENTS FOR EACH COURSE COURSE PANEL

S. No.	Modules	Language Concepts	Language Usage	Theory- Concepts	Theory- Applications	Theory-Skill Based	Theory- Programming	Theory- Analytics	Theory- Technology	Problem- Concepts	Problem- Analysis	Practical- Programming	Practical- Experiments	Practical- Applications	Project	Training
NO.		A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0
1	ICIA-Test	20	20	20	20	20	20	20	20	20	20	20	20	20		
2	IICIA-DIA	10	10	10	10	10	10	10	10	10	10					
3	Model Exam	30	30	30	30	30	30	30	30	30	30	20	20	20		
4	Class Presentation	10	10		10	10		10	10						60	
5	Technical Presentation/ Demonstration			10		10	10	10		10		20	20		20	60
6	Attendance											20	20	20		
7	Group Assignments			10		10				10						
8	Group-Mini project				10			10								
9	Case study					10					10					
10	Group discussion	10	10					10								20
11	Writing skills	10	10	10			10									
12	Simulation exercises						10		10	10	10		20			
13	Poster Presentation/Flow charts/Miniatures/Protocols	10	10	10	10		10		10	10	10	20		20	20	20
14	SSA/self-support assignment (Upcoming technical)				10				10		10			20		
	CIA Marks	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Programme	Course Code	Title
B.Sc (ECS)	19ECU01	Basic Electronics and Network
B.SC (ECS)	19EC001	Analysis

Preamble: This course provides students with a basic understanding of an electricity and electronics. It enables students to solve basic problems related to AC and DC circuits with various theorems and methods.

Expected level of output : Conceptual Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in elements of electronics

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Identify and define basic terms and concepts which are needed for electronic science.	Remembering	Conceptual	Writing skills
CO2	Recognize basic electronic components used for different electronic functions.	Understanding	Conceptual	Technical Presentation
CO3	Understand basic concepts of DC and AC circuit behavior.	Understanding	Conceptual	Writing Skills
CO4	Demonstrate the problem solving skills and proficiency in circuit analysis.	Applying	Technical	Poster Presentation/ Charts
CO5	Express the basic structure, properties and working principles of P-N junction circuit elements.	Analyzing	Analytical	Group Assignment

Modular Assessment Code : C (Theory-Concepts)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	Fundamentals of Electricity Structure of solids; Structure of atoms	Δ				
	Electron orbits; Distribution of electrons in atoms; Valance electrons; Ionized atoms; Energy level diagram	A	2	3		
	Energy bands; Insulators, Conductors and Semiconductors	A	2	2		
I	Nature of electricity; Unit of charge; Free electrons; Electric current	В	1	1	CO1	
	Electric potential; Potential difference; Concept of EMF and potential difference	В	1	1		
	Resistance and its factors; Resistivity; Conductance	В	1	1		
	Ohm's Law; Electric power; Electrical energy	В	1	1		
	Temperature co-efficient of resistance	В	1	1		
II	Passive Circuit Elements Resistor: Resistor specifications; Classification of resistors; Fixed resistors; Variable linear resistors; Nonlinear resistors	A	7	3	CO2 CO3	

	Color code resistance designation; Resistors in series and parallel	A	7	2			
	Inductors: Faraday's laws of electromagnetic induction; Lenz's law; Types of inductors; Fixed and variable inductors; Inductance of a coil; Energy stored in inductor	A	7	3	_		
	Mutually couple coils; Q factor of an inductors; Inductors in series and parallel	A	7	2			
	Capacitors: Capacitor specifications; Classification of capacitors; Fixed and variable capacitors	A	7	2	_		
	Energy stored in a capacitor; Capacitors in series and parallel	A	7	1			
	DC Circuit Analysis Open circuits; Short circuits; Kirchhoff's Laws	В	2	1			
***	Network terminology; Maxwell's mesh current method; Node voltage method	В	3	3	CO3		
III	Superposition theorem; Thevenin's theorem	В	3	3	CO4		
	Norton's theorem; Maximum power transfer theorem	В	3	3			
	Millman's theorem; Reciprocity theorem	В	3	2			
	Simple problems	В	3	2	_		
	AC Fundamentals Sinusoidal alternating voltage and current; AC terminology: Cycle, Time period, Frequency, Amplitude, Average value, RMS value, Phase, Phase difference, Phasor diagram of sinusoidal quantities	В	15	2			
IV	AC circuits with resistance only; AC circuits with inductance only; AC circuits with capacitance only	В	15	3	CO3 CO4		
	RL series circuit; RC series circuit; RLC series circuit	В	16	3	004		
	Resonance in series circuit; Resonance in parallel circuit	В	16 & 18	2			
	Transformer; EMF equation; Voltage transformation ratio	В	20	1	_		
	Semiconductors Types of semiconductors: Intrinsic and Extrinsic semiconductors; P-type and N-type Semiconductors	A	10	3			
	Majority and minority charge carriers; Hall effect	A	10	1			
\mathbf{V}	PN junction; Biasing the PN junction	A	11	2	CO2		
•	PN junction diode; V-I characteristics; Diode current equation	A	12	2	— CO5		
	Zener diode; V-I characteristics	A	13	2			
	Light Emitting Diode (LED); LED voltage drop and	A	13	1	_		
	current						
	Revision			5			

Note: 80% Theory; 20% Problems CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. R.S.Sedha, "A Text Book of Applied Electronics", S.Chand & Company Pvt. Ltd., Reprint 2014.
- B. V.K. Mehta, Rohit Mehta, "Principles of Electrical Engineering and Electronics", S.Chand & Company Ltd., Reprint 2013.

- A. Sangeeta Chaudhary, "Principles of Electronics", Laxmi Publications, First Edition, 2015.
- B. Bernard Grob, "Basic Electronics", McGraw-Hill, Eighth Edition, 1997.
- C. Malvino, Albert Paul, "Electronic Principles", Tata McGraw Hill, Sixth Edition, 2004.
- D. David A.Bell, "Electric Circuits and Electronic Devices", Oxford University Press, Third Impression, 2010.
- D. http://nptel.ac.in/video.php?subjectId=117103063
- E. http://nptel.ac.in/courses/117106101/

Programme	Course Code	Title
B.Sc (ECS)	19ECU02	Basic Electronics Lab

Preamble: This course focuses to design, construct and take measurement of basic electronic circuits, and compare the experimental results with theoretical concepts in the laboratory.

Expected level of output: Practical Level

Department offered : Electronics and Communication Systems
Prerequisites : Knowledge in elements of electronics

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Explain the concepts and responses of basic electronic circuits.	Understanding	Conceptual	Simulation Exercises
CO2	Understand the VI characteristics of semiconductor devices.	Understanding	Technical	Technical Presentation
CO3	Develop the ability to design and analyze electronic circuits.	Applying	Technical	Technical Presentation

Modular Assessment Code Course Inputs:

: L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment						
1	Determining value of resistors and ceramic capacitors						
2	Verification of Ohm's Law						
3	Temperature Coefficient of Resistance						
4	Resistors in Series and Parallel						
5	Capacitors in Series and Parallel						
6	LDR characteristics						
7	Measurement of AC signal parameters using CRO						
8	Measurement of reactance in RC circuit						
9	Series resonance circuit						
10	Parallel resonance circuit						
11	V-I Characteristics of PN junction diode						
12	V-I Characteristics of Zener diode						
	Repeat/Revision	6					
	Total Hours	33					

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuits Lab

Essential Equipments: Power Supply, Function Generator, CRO and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU03	Network Analysis Lab

Preamble: This laboratory course is designed to provide the students with the knowledge to use networks theorems for circuit analysis. In addition, the students will learn how to compare theoretical predictions with experimental results.

Expected level of output: Practical Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in elements of electronics

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Test circuits, analyze data and compare measured performance to theory.	Understanding	Conceptual	Simulation Exercises
CO2	Demonstrate network theorems using electronic components.	Applying	Technical	Technical Presentation
CO3	Troubleshoot and repair simple electric circuits.	Evaluating	Technical	Technical Presentation

Modular Assessment Code Course Inputs: : L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment	
1	Verification of Kirchhoff's Voltage Law (KVL)	
2	Verification of Kirchhoff's Current Law (KCL)	
3	Verification of Voltage Division Rule	
4	Verification of Current Division Rule	
5	Mesh Current Analysis in DC circuit	
6	Node Voltage Analysis in DC circuit	
7	Verification of Super position theorem	
8	Verification of Maximum power transfer theorem	
9	Verification of Thevenin's theorem	
10	Verification of Norton's theorem	
11	Verification of Millman's theorem	
12	Verification of Reciprocity theorem	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuits Lab

Essential Equipments: Power Supply, Ammeter, Voltmeter and Multi-meter

Programme	Course Code	Title
B.Sc (ECS)	19ECU04	Electronic Devices and Circuits

Preamble: This course builds the knowledge-base on the physics of semiconductors as related to the characteristics and design of solid-state electronic devices. It provides fundamental knowledge on basic electronic circuits.

Expected level of output : Conceptual Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in basic electronic components

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Acquire a basic knowledge in solid state electronics including BJT, FET, MOSFET and Thyristors.	Understanding	Conceptual	Writing skills
CO2	Understand the functionality of power supply and regulator circuits.	Understanding	Conceptual	Group Assignment
CO3	Design and verify the amplifier and oscillator circuits.	Applying	Technical	Technical Presentation
CO4	Develop the ability to analyze electronic circuits using discrete components.	Analyzing	Analytical	Poster Presentation/ Charts
CO5	Troubleshoot and redesign the electronic circuits.	Analyzing	Analytical	Technical Presentation

Modular Assessment Code

: C (Theory-Concepts)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Bipolar Junction Transistor (BJT) Construction and Operation of BJT	A	14	2	
	BJT circuit configurations; Comparison of CB, CE and CC configurations	A	14	1	
	Characteristics of a transistor in CE configuration	A	15	1	
I	Transistor Biasing Operating point; DC load line; Stability factor	В	29	1	CO1
-	Base resistor method; Biasing with feedback resistor; Voltage divider bias method	В	29	3	
	Small Signal Amplifiers Classification of amplifiers; Transistor as an amplifier; CE transistor amplifier	A	16	3	
	Two-stage RC coupled amplifier; Frequency response of RC coupled amplifier; Applications	A	18	2	
	Field Effect Transistor (FET) Types of FET; Construction of JFET; Operation of JFET	A	16	2	
II	Characteristics of JFET	A	16	1	CO1
	MOSFETs: Types of MOSFET; Construction and working of D-MOSFET; Characteristics of D-MOSFET	A	16	4	

	Construction and working of E-MOSFET;		1.6	2	
	Characteristics of E-MOSFET	A	16	3	
	Thyristors Types of Thyristors; Silicon Controlled Rectifier (SCR); SCR construction; SCR operation	A	17	3	
	VI characteristics of SCR	A	17	1	_
	TRIAC: TRIAC construction; TRIAC operation	A	17	2	_
III	VI characteristics of TRIAC; Applications	A	17	2	_ CC
	Unijunction Transistor (UJT): Basic construction; UJT operation; VI characteristics of UJT; UJT Relaxation Oscillator	A	17	3	
	DIAC: DIAC construction; VI characteristics of DIAC	A	17	2	_
IV	Power Supply Half-wave rectifier	В	28	1	CO2 CO4
	Full-wave rectifier: Centre-tap full-wave rectifier, Full-wave bridge rectifier	В	28	2	
	DC output voltage; Ripple factor; Efficiency	В	28	2	
	Filter circuits: Types of filter circuits	В	28	2	
	Regulated Power Supply; Zener diode regulator	-	-	2	
	IC voltage regulators: Fixed voltage regulators	-	-	3	
•	Adjustable voltage regulators	-	-	1	
	Power Amplifiers Classification of power amplifiers; Class-A amplifier; Class-B amplifier	A	22	3	
	Class-B push-pull amplifier; Class C amplifier	A	22	2	
v	Feedback Amplifiers Principle of feedback amplifiers	A	29	1	— CC
	Oscillators Classification of oscillators; Barkhausen criterion	A	31	1	– cc
	Hartley and Colpitts oscillators	A	31	3	=
	RC-Phase shift, Wein Bridge and Crystal oscillators	A	31	2	
	Revision			5	
	Total Hours			66	

Note: 80% Theory; 20% Problems CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- R.S. Sedha, "A Text Book of Applied Electronics", S.Chand & Company Pvt. Ltd., Reprint 2014.
- V.K. Mehta, Rohit Mehta, "Principles of Electrical Engineering and Electronics", S.Chand & Company Ltd., Reprint 2013.

- Robert.L.Boylstedand Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, Ninth Edition, 2009.
- Jacob Millman, Christos C Halkias and SatyabrataJit, "Electron Devices and Circuits", TataMcGraw Hill, В. Third Edition, 2010.
- C. David A.Bell, "Electric Circuits and Electronic Devices", Oxford University Press, Third Impression, 2010.
- http://nptel.ac.in/courses/117107095/
- http://nptel.ac.in/courses/117107095/36

Programme	Course Code	Title
B.Sc (ECS)	19ECU05	Electronic Devices Lab

Preamble: This course is to study the characteristics of various electronic devices and design of various electronic circuits like rectifier, power supply, etc.

Expected level of output: Practical Level

Department offered: Electronics and Communication Systems

Prerequisites: Knowledge in Electronic circuits

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the working and operational characteristics of Semiconductor devices.	Understanding	Conceptual	Simulation Exercises
CO2	Verify practically the response of various special purpose electronic devices.	Applying	Technical	Technical Presentation
CO3	Design and evaluate the rectifiers, power supply and filters.	Evaluating	Technical	Technical Presentation

Modular Assessment Code Course Inputs:

: L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment	
1	Transistor Characteristics in CE Mode	
2	JFET Characteristics	
3	SCR Characteristics	
4	SCR Turn Off using LC Circuit	
5	AC Voltage Controller using TRIAC and DIAC	
6	UJT Characteristics	
7	UJT as Relaxation Oscillator	
8	Half Wave Rectifier	
9	Full Wave Rectifier (Center-tap)	
10	Bridge Rectifier	
11	DC Regulated Power Supply using Zener Diode	
12	DC Regulated Power Supply using ICs	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuits Lab

Essential Equipments: Power Supply, Function Generator, CRO and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU06	Electronic Circuits Lab

Preamble: This course is designed to provide an experience in design, construct, analysis and test the basic electronic circuits.

Expected level of output: Practical Level

Department offered: Electronics and Communication Systems

Prerequisites : Knowledge in Electronic circuits

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Learn about biasing of BJTs.	Understanding	Technical	Simulation Exercises
CO2	Understand the frequency response of amplifiers.	Understanding	Technical	Technical Presentation
CO3	Design and evaluate the oscillators.	Applying	Technical	Technical Presentation

Modular Assessment Code Course Inputs:

: L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment	
1	Transistor Biasing - Base Resistor Method	
2	Transistor Biasing with Feedback Resistor	
3	Transistor Biasing - Voltage-divider Bias Method	
4	Diode Based Clipping and Clamping Circuits	
5	Frequency Response of CE Transistor Amplifier	
6	Two-stage RC Coupled Amplifier	
7	FET Amplifier	
8	Class-B Push-Pull Amplifier	
9	Hartley Oscillator	
10	Colpitts Oscillator	
11	RC-Phase Shift Oscillator	
12	Crystal Oscillator	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuits Lab

Essential Equipments: Power Supply, Function Generator, CRO and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU07	Communication Electronics

Preamble: This course covers fundamental concepts of communication systems, which are essential for the understanding of advanced communication systems.

Expected level of output : Conceptual Level

Department offered: Electronics and Communication Systems

Prerequisites : Knowledge in electronic circuits and basic mathematics

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Learn the basic concepts of electromagnetic wave radiation and propagations.	Remembering	Conceptual	Group Assignment
CO2	Understand important and fundamental antenna engineering parameters and terminology.	Understanding	Conceptual	Writing skills
CO3	Understand AM, FM and PM communication systems.	Understanding	Conceptual	Poster Presentation/ Charts
CO4	Apply the essential facts about single sideband modulation for radio communications systems.	Applying	Technical	Technical Presentation
CO5	Design and analyze performance of the Super Heterodyne receiver.	Analyzing	Analytical	Technical Presentation

Modular Assessment Code : C (Theory-Concepts) Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Radiation and Propagation of Waves Fundamentals of EM Waves; Reflection; Refraction; Interference of EM waves	A	10	2	
I	Ground wave propagation; Sky wave propagation; Space wave propagation	A	10	3	CO1
	Virtual height; Critical frequency; MUF; Skip distance	A	10	3	
	Duct propagation; Tropospheric scatter propagation	A	10	2	
	Antennas Electromagnetic radiations; Elementary doublet	A	9	1	
	Current and voltage distributions; Resonant antennas, Radiation patterns and length calculations	A	9	2	
II	Non-resonant antennas; Antenna gain and Effective radiative power; Antenna resistance	A	9	2	CO2
	Bandwidth, Beam width and Polarization; Grounded and ungrounded antennas	A	9	1	CO2
	Effect of Antenna height; Selection of Feed point; Antenna Couplers; Impedance matching with stubs and other devices	A	9	2	
	Dipole arrays; Yagi-Uda antenna; Parabolic antenna ; Horn and Loop antenna; Helical antenna	A	9	2	

	Modulation Techniques				
	Introduction to communication systems; Elements	Α	1	2	
	of communication systems; Need for modulation		_	_	
	Electromagnetic spectrum and typical				
	applications; Terminologies in communication	A	1	3	
	systems; Basics of signal representation and	A	1	3	
	analysis				
III	Amplitude modulation (AM)				CO3
	AM Techniques; Frequency spectrum of AM	Α	3	3	CO4
	wave; Time domain Representation of AM wave;	71	3	3	
	Power Relations in the AM wave				
	Sideband Modulation Technique	A	3	1	
	Generation of DSBC signal: Balanced Modulator				
	Generation of SSB signal: Filter method, Phase	A	3	3	
	shift method; Third method				
	Vestigial Sideband Modulation Technique	Α	3	1	
	Angle Modulation Techniques	A	4	2	
	Frequency modulation; Phase modulation;	A	4	2	
	Comparison of frequency and phase modulation Frequency Modulation (FM)				
IV	Mathematical representation; Frequency spectrum	Α	4	3	CO3
- '	of the FM wave; Pre-emphasis and De-emphasis	А	4	3	
		Α.	4	2	
	Generation of FM: Direct and Indirect methods	A	4	2	
	Comparison of FM and AM	A	4	1	
	Receiver	A	7	2	
	Super Heterodyne Receiver			-	
	RF section and its characteristics; Sensitivity;			2	005
\mathbf{V}	Selectivity; Image frequency and its rejection;	A	6	3	CO5
	Adjacent channel selectivity	D		2	
	Spurious response; Tracking	B	6	2	
	AGC; Double conversion receiver	В	6	2	
	Revision			5	
	TC VISIOII				

Note: 100% Theory

CIA: 25 Marks; End Semester:75 Marks

Text Books:

- A. Kennedy and Davis, "Electronic Communication Systems", Tata McGraw Hill, Fifth Edition, 2011.
- B. Dennis Roddy and John Coolen, "Electronic Communication", PHI, Fourth Edition, 2008.

- A. Louis E. Frenzel, "Principles of Electronic Communication Systems", McGraw-Hill Education, 3 edition, 2007
- B. S. L. Gupta, V. Kumar, "A Hand book of Electronics", Pragati Prakashan, 38th Edition, 2012.
- C. Anoksingh & A.K. Chhabra, "Principles of Communication Engineering", S.Chand & Company Ltd, Sixth Edition, 2007.
- D. NIIT, "Basics of Electronic Communication", Prentice Hall India Pvt. Ltd, 2004.
- E. http://nptel.ac.in/courses/117102059/

Programme	Course Code	Title
B.Sc (ECS)	19ECU08	Integrated Circuits and Instrumentation

Preamble: This course provides the knowledge on linear integrated circuits and electronic instruments. It enables the students to analyze the characteristics of operational amplifiers.

Expected level of output Conceptual Level

Department offered : **Electronics and Communication Systems**

Prerequisites : Knowledge in basic electronic components and devices

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the various IC fabrication process.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Describe the characteristics, linear and nonlinear application of operational amplifier.	Understanding	Conceptual	Writing skills
CO3	Develop the ability to analyze and design the Timer and PLL based linear circuits.	Analyzing	Analytical	Technical Presentation
CO4	Understand the concepts and working principles of electronic instruments.	Understanding	Conceptual	Group Assignment
CO5	Understand the basic manufacturing processes related to electronic products	Understanding	Conceptual	Group Assignment

Modular Assessment Code : C (Theory-Concepts) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	IC Fabrication Technology Fundamentals of Monolithic IC technology; Basic planar process; Wafer preparation; Epitaxial growth	A	1	2	
I	Oxidation; Photolithography; Diffusion of impurities; Isolation techniques	A	1	3	CO1
	Metallization; Monolithic transistors; Integrated resistors; Integrated capacitors	A	1	3	
	Integrated Inductors; Thin and Thick film technology	A	1	2	
	Operational Amplifier Ideal Op-amp; Op-amp parameters; Inverting and Non-inverting amplifier; Differential amplifier	A	2	2	
	Adder and Subtractor; Instrumentation Amplifier	A	3,4	2	
II	Voltage to Current converter; Current to Voltage converter	A	4	2	CO2
	Differentiator; Integrator	A	4	2	
	Comparator; Application: Zero crossing detector	A	5	1	
	Active Filters: First order low-pass, high-pass and band-pass filters	A	7	2	

	Timer				
	Functional block diagram of 555 timer; Mono-stable	Α	8	3	
	operation; Applications: Linear ramp generator;		Ü	J	
	Pulse width modulator				
Ш	Astable operation; Applications: FSK Generator; Schmitt trigger	A	8	2	CO3
111	Phase locked loop PLL				_ cos
	Basic principles; Phase detector/comparator; Voltage	A	9	3	
	Controlled Oscillator				
	PLL Applications: Frequency multiplier/division;	A	9	2	
	AM detection	A	9	<u> </u>	
	Electronic Instruments	_		_	
	Electronic Voltmeter; Electronic Ammeter;	В	-	3	
	Electronic Multi-meter Oscilloscope: Block diagram. Frequency				<u></u>
IV	Oscilloscope: Block diagram, Frequency Measurement, Phase angle and Time delay	В	_	2	
	measurement	Ъ		2	CO4
	Digital Storage Oscilloscopes (DSOs)	В	-	1	
	Function Generator; Audio Frequency Signal	В		2	
	Generation	D	_	<u> </u>	
	Wave Analyzer; Spectrum Analyzer: Block diagram,	В	_	2	
	Applications				
	Instrument Design and Manufacturing Techniques	С	10	2	
	Grounding; Shielding	C	10	2	
	Elements of Design: Product life cycle; Circuit			_	
V	design; Circuit layout	C	10	2	CO5
	Assembly and inspection; Testing and calibration	С	11	1	_
	Power distribution; Wiring and cabling; Enclosures	С	11	2	
	Integrated testing; Documentation	С	11	2	
	Revision			5	

Note: 100% Theory

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. D. Roy Choudhury and Shahil B Jain, "Linear Integrated Circuits", New Age International Publishers, Second Edition, 2004.
- B. Albert D. Helfrick, William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2006.
- C. M. M. S. Anand, "Electronic Instruments and Instrumentation Technology", PHI Learning Pvt. Ltd., 2005.

- A. Ramakant. A Gayakwad, "Op-Amp and Linear Integrated circuits", PHI Learning Private limited, 2009.
- B. T.R Ganesh Babu, B.Suseela, "Linear Integrated Circuits", Scitech Publications Pvt. Ltd., Third Edition, 2010.
- C. H.S.Kalsi, "Electronic Instrumentation", Tata McGraw Hill Publication Company Limited, Sixth Reprint, 2006.
- D. J.B.Gupta, "A course in electronic and electrical measurements and instrumentation", S.K Kataria & Sons, 13thEdition, 2008
- D. http://nptel.ac.in/courses/117107094/8
- E. http://nptel.ac.in/courses/117106030/

Programme	Course Code	Title
B.Sc (ECS)	19ECU09	Digital Electronics and VHDL

Preamble: This course will familiarize students with the fundamental knowledge on number systems, combinational logic circuits and sequential logic circuits. It will provide students an overview of the VHDL language.

Expected level of output : Conceptual Level

Department offered: Electronics and Communication Systems

Prerequisites: Knowledge in number systems and computer fundamentals

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Recall the different number systems.	Remembering	Conceptual	Poster Presentation/ Charts
CO2	Understand the Boolean expressions and Logic gates.	Understanding	Conceptual	Group Assignment
CO3	Analyze the Combinational building blocks.	Analyzing	Analytical	Technical Presentation
CO4	Gain the capability of implementing various counters, registers and flip-flop based systems.	Analyzing	Analytical	Poster Presentation/ Charts
CO5	Describe the operation of ADC and DAC circuits.	Understanding	Conceptual	Writing skills

Modular Assessment Code : C (Theory-Concepts) Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Number Systems Binary, Decimal, Octal and Hexadecimal numbers; Conversion	A	1	4	
I	Floating point representation of numbers; Arithmetic Operations	A	1	2	-
1	Negative binary numbers using 1's and 2's complements; Binary Coded Decimal (BCD)	A	1	2	CO1
	Codes Weighted codes and Non-Weighted codes; Error detecting codes; Error correcting codes; Alphanumeric codes	A	1	3	
	Boolean Algebra Boolean logic operations, Basic laws of Boolean algebra; DeMorgan's theorem; Sum of Products and Product of Sums; Karnaugh map (Four variables)	A	2	4	
II	Logic Gates OR, AND, NOT, NAND, NOR, EX-OR and EX-NOR gates, NAND and NOR as universal gates	A	3	3	CO2
	HDL for Digital Circuits Introduction to VHDL programming, VHDL Coding for Logic gates	A	13	3	

	Combinational Logic Circuits				
	Half adder; Full adder; Half Subtractor; Full Subtractor; Parallel binary adder; 4-bit binary adder/ Subtractor; BCD adder	A	4	3	
Ш	Multiplexer; De-multiplexer; Decoders; Encoders	A	5	3	CO3
	Parity generators/checkers; Binary-to-Gray code converter; Gray-to-Binary code converter; Magnitude comparator	A	5	3	
	VHDL code for combinational logic circuits	A	13	2	
	Sequential Logic Circuits Flip-Flops S-R Flip-flop, Clocked S-R Flip-flop, D Flip-flop and T Flip-flop	A	6	3	
IV	J-K Flip-flop; Master-slave Flip-flops; Applications of Flip-flops	A	6	2	— CO4
	Counters Asynchronous / Ripple counter; Decade counter; Updown counter; Synchronous counter; Design of Synchronous MOD-N counters	A	7	3	CO4
	Registers Shift Registers and its types	A	8	1	
	D/A Converters Resistive divider network; Binary ladder network; D/A converter specifications	В	10	3	
V	A/D Converters Simultaneous type; Counter type; Successive approximation type	В	10	3	CO5
	Single and dual-slope type; A/D converter specifications	В	10	3	
	Revision			5	
	Total Hours			55	

Note: 80% Theory; 20% Problems CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. S. Salivahanan, S. Arivazhagan, "Digital Electronics", Vikas Publishing House Pvt. Ltd., First Edition,
- B. Anil. K. Maini, "Digital Electronics", Wiley Publications, First Edition, 2008.

- A. Donald Leach, Albert Malvino and GoutamSaha, Digital Principles and Applications", McGraw-Hill Education India, Seventh Edition, 2010.
- B. Bhasker. J, "A VHDL Primer", PHI Learning Pvt. Ltd, Third Edition, 2008.
- C. M. Morris Mano, "Digital Design", Prentice-Hall of India, Third Edition, 2005.
- D. http://nptel.ac.in/courses/117106086/

Programme	Course Code	Title
B.Sc (ECS)	19ECU10	Linear Integrated Circuits Lab

Preamble: This course provides the basic knowledge in the selection of integrated circuits, study of its specifications and functionality, and design of practical applications.

Expected level of output Practical Level

Department offered : **Electronics and Communication Systems**

Knowledge of Electronic Devices and Circuits Analysis **Prerequisites** :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Demonstrate an understanding of fundamentals of integrated circuits.	Understanding	Conceptual	Simulation Exercises
CO2	Design an application with the use of integrated circuits.	Applying	Technical	Technical Presentation
CO3	Learn how to apply troubleshooting and problem solving skills to resolve linear integrated circuit issues.	Evaluating	Technical	Technical Presentation

Modular Assessment Code Course Inputs:

: L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment	
1	Inverting and Non-inverting Amplifier using Op-Amp	
2	Adder and Subtractor using Op-Amp	
3	Integrator and Differentiator using Op-Amp	
4	Comparator using Op-amp	
5	Active Low Pass and High Pass Filters using Op-Amp	
6	Monostable and Astable Multivibrators using IC 555	
7	Schmitt Trigger using Op-Amp	
8	Frequency Multiplier using PLL	
9	Current to Voltage and Voltage to Current Converter using Op-Amp	
10	Peak Detector using Op-Amp	
11	Instrumentation Amplifier using Op-Amp	
12	Precision Rectifiers using Op-Amp	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuits Lab

Essential Equipments: Power Supply, Function Generator, CRO and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU11	Digital Electronics and VHDL Lab

Preamble: This course focuses to design and construct the basic digital electronic circuits and to become familiar with the VHDL programming.

Expected level of output Practical Level

Department offered : **Electronics and Communication Systems** Basic knowledge in electronic circuits **Prerequisites** :

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level Skill		Capstone Evaluation
CO1	Acquire the fundamental knowledge in basic logic gates.	Understanding	Conceptual	Simulation Exercises
CO2	Design and analyze digital electronic circuits.	Applying	Technical	Technical Presentation
CO3	Develop the VHDL programming for the digital circuits.	Applying	Technical	Technical Presentation

Modular Assessment Code

: L (Practical - Experiments)

Course Inputs:

Any 9 Experiments

Exp.	Name of the Experiment	
1	Verification of Logic Gates	
2	Half Adder and Full Adder	
3	Half-Subtractor and Full-Subtractor	
4	4-bit Binary to Gray and Gray to Binary Conversion	
5	4x2 Encoder and 2x4 Decoder	
6	4:1 Multiplexer and 1:4 De-multiplexer	
7	Verification of JK Flip-Flop	
8	Shift Registers and Ring Counter	
9	Logic Gates using VHDL	
10	Half Adder and Full Adder using VHDL	
11	Decoder and Encoder using VHDL	
12	Multiplexer and De-multiplexer using VHDL	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical classes to be arranged in Electronic Circuits Lab and DSP Lab. Essential Equipments: Power Supply, Function Generator and Multi-meter

Programme	Course Code	Title
B.Sc (ECS)	19ECU12	Microwave and Fiber Optic Communication Systems

Preamble: The course aims to provide students with a broad understanding of microwaves and microwave active devices. It will also explain the RADAR and fiber optic communication systems.

Expected level of output : Conceptual Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in basic electronic systems

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the theory of microwave and fiber optic communication.	Understanding	Conceptual	Writing skills
CO2	Discuss the working of microwave amplifiers, oscillators and devices.	Understanding	Conceptual	Poster Presentation/ Charts
CO3	Design and analyze the microwave amplifiers, oscillator and devices.	Analyzing	Analytical	Technical Presentation
CO4	Understand the basics of Radar technology.	Understanding	Conceptual	Poster Presentation/ Charts
CO5	Describe the different characteristics of optical fiber.	Understanding	Conceptual	Group Assignment

Modular Assessment Code : C (Theory-Concepts)
Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	Introduction to Microwaves Microwave region and Band designations; Advantages of Microwaves; Applications of Microwaves	A	2	2		
	Maxwell's equation: Ampere law; Faraday law; Gauss law	A	2	2	•	
	Wave equation	A	2	2	-	
I	Types of wave guides	A	4	1	- CO1 -	
	Propagation of TEM waves; TE and TM modes	A	4	1		
	Propagation of TE and TM modes in rectangular waveguides	A	4	2		
	Circular waveguides; Advantages, disadvantages and application of Circular waveguides	A	4	2		
	Microwave Amplifiers and Oscillators Microwave tubes; Two cavity Klystron	A	8	2		
II	Multi cavity Klystron; Reflex Klystron	A	8	2	CO2	
	Travelling Wave Tube (TWT)	A	8	2	- CO3	
	Magnetron; Applications	A	8	2		
III	Microwave Devices Microwave transistors	В	9	1	CO2 CO3	

	Gallium Arsenide (GaAs) metal semiconductor FET	A	9	1	
	Varactor Diode; Schottky diode	A	9	2	
	Principle of Operation and application of tunnel diode	A	9	1	
	Principle of operation of Gunn diode, Applications and Advantages of Gunn diode	A	9	2	
	MASER principle; Applications	A	9	2	
	RADAR Introduction; Block diagram; Classification	A	11	2	
IV	Radar range equation; Factors affecting the range of a radar receiver	A	11	2	CO4
	Line pulse modulator; PPI (Plane Position Indicator)	A	11	2	
	Moving Target Indicator (MTI); FM CW Radar; Applications	A	11	3	
	Laser Radar	-	-	1	
	Optical Fiber Communication Evolution of fiber optic system; Elements of an optical fiber communication link; Advantages of optical fiber communication	В	1& 2	3	
\mathbf{v}	Fiber types; Total internal reflection; Acceptance angle; Numerical Aperture	В	2	2	CO5
	Fiber optical sources: LED structure; Laser diode structure	В	3	3	
	Optical detectors: PIN diode; Avalanche photo diode	В	4	3	
	Revision			5	
	Total Hours			55	

Note: 90% Theory, 10% Problems

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications, Fifth Edition, 2014.
- Sathyamurthy, Jayanthy Daniel, Nisha Lawrence, "Optical communication", Sams Publishers, First Edition, 2009.

- Samuel Y.Liao, "Microwave Devices and Circuits", Prentice Hall, Third Edition, 2005.
- Sen.A.K, Bhattacharya.A.B, "Radar system and Radio aids to Navigation", Khanna Publications, Fifteenth Edition, 2002.
- Skolnik, Merrill I. "Radar Handbook", McGraw-Hill Education; Third Edition, 2008. C.
- Maini.A.K, "Microwave and RADAR principles and applications", Hanna Publishers, Second Edition, 2001.
- Keiser G, "Optical Fiber Communication Systems", Tata McGraw Hill, 4th Edition, 2010. E.
- http://nptel.ac.in/courses/117101002/

Programme	Course Code	Title
B.Sc (ECS)	19ECU13	8051 Microcontroller and Applications

Preamble: This course provides a broad and systematic introduction to microcontroller based system design. It explores the hardware architecture, programming and applications of 8051 Microcontroller.

Expected level of output Conceptual and Application Level

Department offered Electronics and Communication Systems :

Prerequisites Knowledge in Digital Electronics and C Programming :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Recall and apply a basic concept of digital fundamentals to Microcontroller based system	Remembering	Conceptual	Poster Presentation/ Charts
CO2	Understand the basic concepts and working principles of 8051 Microcontroller	Understanding Conceptual		Class Presentation
CO3	Familiarize with the assembly level and embedded C programming using 8051	Understanding	Conceptual	SSA
CO4	Analyze the properties of Microcontroller	Analyzing	Analytical	Class Presentation
CO5	Formulate appropriate computing solution and apply it to the Microcontroller based real-time applications	Applying	Technical	Group Mini Project

Modular Assessment Code : D (Theory-Applications) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	8051 Architecture and Memory organization Definition of Basic Terminologies: Digital Computer; CPU; ALU; Control Unit; Memory; RAM; ROM; Peripherals; Input; Output; Microprocessor; Microcontroller	A	1	2		
I	Bit; Byte; Nibble; Word; Instruction; Mnemonics; Program; Machine Language; Assembly Language; Low level Language; High Level Language; Assembler; Compiler; Interpreter; Simulator; Integrated Development Environment (IDE)	A	1	2	CO1 C02	
	Microcontrollers for Embedded Systems; Criteria for choosing microcontroller	A	1	1		
	Overview of 8051 family	A	1	1		
	Architecture of 8051	A	1	2	-	
	8051 Memory organization: Program memory; RAM allocation; SFR	A	2	2	•	
	Instruction Set and Addressing Modes Flag bits and PSW register	A	2	1		
II	Program counter; Instruction Fetching, Decoding and Execution concepts	A	2	1	CO2 CO3	
	8051instruction set: Data transfer instructions; Arithmetic instructions	A	6	3		

	Logical instructions; Boolean and Branching instructions	A	4&6	3	
	Addressing modes	A	5	2	
	ALP & Embedded C Programming Introduction to ALP: Data types and Assembler directives; Simple data transfer programs	A	2&6	2	
	Unsigned addition and subtraction	A	6	1	
	Unsigned multiplication and division	A	6	1	
III	Counting and Looping techniques; Addition of array of data	A	6	1	CO3
***	Introduction to Embedded C: C data types and operators for 8051; Simple data transfer, arithmetic and logical programs using C	A	7	3	_ 003
	I/O port programming: single bit operations in ALP and C	A	7	1	
	Time delay programming and delay calculation in ALP and C	A	7	2	
	8051Peripherals and Interrupts Timers: Basic registers of timer; Programming 8051 timer and counter	A	9	2	
IV	UART: Serial communication registers; 8051connection to RS232; 8051serial communication programming	A	10	3	 CO4
	8051 interrupts: Interrupt registers	A	10	1	
	Programming timer interrupts; Programming external hardware interrupts; Programming serial communication interrupts	A	11	4	_
	Real World Applications I/O Interfacing: Key, LEDs	A	12	1	
	LCD Interfacing	A	12	1	
	Hex key board interfacing	A	12	1	
Timers: Basic register 8051 timer and counter UART: Serial community 8051 connection to RS2 programming 8051 interrupts: Inter	ADC Interfacing; Sensor interfacing; DAC Interfacing	A	13	3	CO5
	Relay interfacing	A	16&17	1	
	Interfacing DC motor and Stepper motor	A	16&17	2	
	Revision			5	-
	Total Hours			55	

Note: 70% Theory; 30% Programs CIA: 25 Marks; End Semester: 75 Marks

Text Book:

A. Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems using Assembly and C", Pearson, Second Edition, 2008.

- A. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill Education, 2014.
 B. A.P. Godse, D.A. Godse, "Microprocessor and Microcontroller", Technical Publications Pune, First Edition, 2007.
- C. http://nptel.ac.in/courses/117104072/
- D. http://nptel.ac.in/courses/108105102/23

Programme	Course Code	Title
B.Sc (ECS)	19ECU14	Communication Electronics Lab

Preamble: This course aims to experimentally study the concepts of communication electronics by designing the circuits and to become familiar with various output wave forms.

Expected level of output Practical Level

Department offered : **Electronics and Communication Systems Prerequisites** Basic knowledge in electronic principles :

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Verify the characteristics of various electronic communication circuits practically.	Applying	Technical	Technical Presentation
CO2	Understand the need and the basics of antenna.	Analyzing	Analytical	Simulation Exercises
CO3	Apply the knowledge on design techniques and study the performance behavior of communication systems.	Applying	Technical	Technical Presentation

Modular Assessment Code Course Inputs:

: L (Practical - Experiments)

Any 9 Experiments

Exp.	Name of the Experiment	
1	Amplitude Modulation and Demodulation	
2	Frequency Modulation	
3	Frequency Demodulation	
4	DSB-SC modulation and demodulation	
5	SSB-SC modulation and Demodulation (Phase Shift method)	
6	VCO using IC 555	
7	RF Amplifier	
8	IF Tuned Amplifier	
9	Characteristics of Mixer Circuit	
10	Pre-emphasis and De-emphasis Circuits	
11	Balanced modulator	
12	Study of Super Heterodyne Receiver	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Communication Lab Essential Equipments: Power Supply, Communication trainers and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU15	8051 Microcontroller and Applications Lab

Preamble: This course introduces students to the 8051 MCU assembly language and embedded C programming. It gives a practical training of interfacing the peripheral devices with the 8051 microcontroller.

Expected level of output: Practical Level

Department offered: Electronics and Communication Systems

Prerequisites : Knowledge in Logic Circuit Design

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the 8051 microcontroller and its programming with assembly and C.	Understanding	Technical	Poster Presentation /Chart
CO2	Enrich their knowledge with hands on experiments and project based learning.	Applying	Technical	Poster Presentation /Chart
CO3	Troubleshoot interactions between software and hardware.	Analyzing	Analytical	SSA

Modular Assessment Code : M (Practical - Applications) Course Inputs:

Any 9 Experiments

Exp.	Name of the Experiment	
1	Arithmetic Operations	
2	Logical Operations	
3	Sum of N numbers	
4	Square Wave Generation	
5	KEY and LED Interface	
6	Solid-State Relay Interface	
7	DC Motor Control	
8	LCD Interface	
9	Object Counter using Interrupt	
10	Stepper Motor Interface	
11	Serial Port Interface using RS232	
12	Distance Measurement using Ultrasonic Sensor	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Microprocessor and Microcontroller Lab

Essential Equipments: Power Supply, Function Generator, 8051 Programmer, CRO and Multi-meter

Essential Software : MCU 8051 IDE and 8051 Programming software

Programme	Course code	Title
B.Sc (ECS)	19ECU16A	Programmable Logic Controller

Preambles: This course develops the functional design, hardware configuration, programming and applications of Programmable Logic Controllers (PLC).

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites : Knowledge in digital logic circuits

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Describe the function of various hardware components of a programmable logic controller.	Understanding	Conceptual	Poster Presentation /Chart
CO2	Know the PLC ladder logic and basic programming concepts.	Understanding	Conceptual	Class Presentation
CO3	Demonstrate the operation of logic circuits by programming in the programmable logic controller.	Applying	Technical	SSA
CO4	Apply PLC Timers and Counters for the control of industrial processes.	Applying	Technical	Class Presentation
CO5	Use a PLC in order to monitor and control industrial processes.	Applying	Technical	Group Mini Project

Modular Assessment Code Course Inputs:

: D (Theory-Applications)

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Programmable Logic Controller Controllers; Hardware	A	1	1	
	Internal Architecture of a PLC	A	1	1	_
T	Input Devices: Mechanical switches; Proximity switches; Photoelectric sensors and switches; Temperature sensors	A	2	2	CO1
1	Position/Displacement sensors; Strain gauges; Pressure sensors; Liquid level detectors; Fluid flow measurement; Smart sensors	A	2	3	-
	Output Devices: Relay; Directional control valves; Motors; Stepper motors	A	2	2	
	Examples of PLC applications	A	2	1	
	I/O Processing Input units; Output units	A	4	1	
	Signal conditioning; Remote connections	A	4	2	<u>.</u>
	Processing Inputs; I/O Addresses	A	4	2	CO1
II	Ladder and Functional Block Programming Ladder diagrams	A	5	2	CO2
	Logic functions; Latching; Multiple outputs	A	5	2	_'
	Functional blocks	A	5	1	-

	PLC instructions	В	5	1	
	Relay type instructions				
	Instruction addressing; Branch instructions; Internal relay instructions	В	5	2	
ш	Programming Examine IF closed and Examine IF open instructions; Modes of operation	В	6	2	CO2
	Converting relay schematics into PLC ladder programs; Writing a ladder logic program directly from a narrative description	В	6	2	CO3
	Program examples: Lamp and Valve operation program, Location of stop switches, Motorized door, Filling operation	A & B	5 & 6	3	
	PLC Timer and Counter				
	Timer Instructions: ON-Delay timer instructions; OFF-	В	7	3	
	Delay timer instructions				CO3
IV	Counter instructions: UP Counter; Down Counter	В	8	3	
	Allen-Bradley SLC-500 PLC Instructions:	_	_		
	Program control instructions; Data manipulation	В	9	4	
	instructions; Math instructions				
	Applications of PLC Simple sequence control concepts; Automatic packing mechanism	C	-	3	
V	Automatic control of warehouse door; Automatic lubricating oil supplier	C	-	2	CO5
	Conveyor belt motor control; Bottle label detection	С	_	3	
	Ball sorter mechanism	С	-	2	
	Revision			5	
	Total Hours			55	

Note: 80% Theory; 20% Programs CIA: 25 Marks; End Semester: 75 Marks

Text Books/Manuals:

A. W. Bolton, "Programmable Logic Controllers", Fifth Edition, Elsevier India Pvt. Ltd., New Delhi, 2011.
B. Frank D. Petruzella, "Programmable Logic Controllers", Tata McGraw Hill, Third Edition, 2010.

C. http://www.pacontrol.com/download/OMRON-PLC-Programming.pdf

- A. Siemens "PLC Handbook"
- B. Allen-Bradley "PLC Handbook"
- C. http://www.nptel.ac.in/courses/112102011/11

Programme	Course Code	Title
B.Sc (ECS)	19ECU16B	Biomedical Instrumentation

Preamble: This course is to provide the fundamental knowledge of Biomedical Instrumentation and the science associated with the measurement of biological variables.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites Knowledge in biological systems and instrumentation :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the basic signals in the field of biomedical and explain the role of biopotential electrodes.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Know the various medical equipments and their technical aspects.	Understanding	Conceptual	Class Presentation
CO3	Understand medical diagnosis and therapy.	Understanding	Conceptual	Class Presentation
CO4	Analyze the position of biomedical instrumentation in modern hospital care.	Analyzing	Analytical	SSA
CO5	Explore the application of scientific methods to the complex biomedical signals.	Evaluating	Technical	Group Mini Project

Modular Assessment Code

: D (Theory-Applications)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Human Physiological systems Cells and their structure; Transport of potentials; Bio-electric potentials	A	1	3	
I	Bio-potential Electrodes Design of medical instruments; Components of Bio medical instrument system; Electrodes; Half cell potential; Purpose of the electrode paste	A	2	4	CO1
	Types of electrode: Microelectrode, Depth and Needle electrodes, Surface electrode	A	2	3	
II	Bio Potential Recorders Characteristics of the recording system; Electrocardiography: Origin of cardiac action potential; ECG lead configurations; ECG recording setup	A	4	4	602
	Practical considerations for ECG recording; Echocardiography	A	4	2	CO2
	Electroencephalography (EEG): Origin of EEG; Brain waves; Placement of electrodes; Recording setup	A	4	4	

	Electromyography EMG Recording setup; Determination of conduction	A	4	2	
	velocities in motor nerves Electroretinography (ERG)	A	4	1	
III	Electroculography (EOG)	A	4	2	CO2 CO4
		А	4		CO4
	Blood pressure measurement; Blood flow meter (Doppler method)	В	6	2	
	Audio meter	В	17	1	
	X- ray machine	В	19	2	
	Pace makers				
	Energy requirements to excite heart muscle; Methods of stimulation, Different modes of operation	A	5	3	
IV	Defibrillators Different types of defibrillator; AC defibrillator; DC defibrillator	A	5	3	CO2 CO4
	Heart-Lung Machine Mechanical function of the heart; Model of the heart lung machine	A	5	2	CO5
	Kidney machine Dialysis; Hemodialysis; Peritoneal Dialysis	A	5	2	_
	Surgical Diathermy Short wave diathermy; microwave diathermy; Ultrasonic diathermy	A	6	3	
\mathbf{V}	Ventilators	A	6	1	CO3
V	Anesthesia machine	A	6	1	CO5
	Computers in medicine; Endoscopes	A	10	2	
	Computer tomography (CT Scan); Magnetic Resonance Imaging (MRI Scan)	A	10	3	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- M. Arumugam, "Biomedical Instrumentation", Anuradha Publications, Reprint, 2009.
- R. S. Khandpur, "Handbook of Biomedical Instrumentation", McGraw-Hill Education, Third Edition, 2014.

Reference Book:

- Joseph J.Carr, John M. Brown, "Introduction to Biomedical Equipment Technologies", Fourth Edition, Pearson Education.
- Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical Instrumentation and Measurements", Prentice Hall India Learning Private Limited, Second Edition, 1990.

Programme	Course code	Title
B.Sc (ECS)	19ECU17B	Internet of Things

Preamble: The course introduces the concepts of Internet of Things to build IoT applications.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Knowledge in computer networks and microcontrollers **Prerequisites**

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the concepts of Internet of Things.	Understanding	Conceptual	Writing Skills
CO2	Understand the basic design principles for IoT.	Understanding	Conceptual	Group Assignment
CO3	Understand how enterprises plan for IoT deployment in networks.	Understanding	Conceptual	Group Assignment
CO4	Acquire skills on IoT Systems like Python Packages and Raspberry pi.	Understanding	Conceptual	Technical Presentation
CO5	Implement basic IoT applications on embedded platform.	Applying	Technical	Poster Presentation/ Charts

Modular Assessment Code : C (Theory-Concepts)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Introduction to Internet of Things Definition and Characteristics of IoT; Physical Design of IoT	A	1	2	
I	Logical Design of IoT; IoT Enabling Technologies	A	1	3	CO1
_	IoT Levels and Deployment Templates	A	1	2	
	Domain Specific IoTs: Home Automation, Smart Cities, Industry Automation	A	2	3	
	Design Principles for Connected Devices IoT/M2M systems layers and designs standardization; Communication technologies	В	2	2	
	Data enrichment, Data consolidation and device management at gateway	В	2	2	
II	Design Principles for Web Connectivity Web communication protocols for connected devices; Message communication protocols for connected devices	В	3	3	CO2
	Web connectivity for connected-devices network using gateway, SOAP, REST, HTTP, RESTful and WebSockets	В	3	3	
III	Internet Connectivity Principles Internet connectivity; Internet based communication; IP addressing in the IoT; Media access control	В	4	2	CO3

	Application layer protocols: HTTP; HTTPS; FTP;				
	Telnet and others	В	4	3	
	Data Acquiring, Organizing, Processing and				
	Analytics				
	Data acquiring and storage; Organizing the data;	В	5	4	
	Transactions, Business processes, Integration and enterprise systems				
	Analytics; Knowledge acquiring, Managing and				
	storing processes	В	5	2	
	IoT Systems-Logical Design using Python				
	Python Data Types and Data Structures; Control	A	6	3	
	Flow; Functions				
	Python Packages of Interest for IoT: JSON, XML, HTTPLib & URLLib, SMTPLib	A	6	2	
IV	IoT Physical Devices and Endpoints				— CO4
	An IoT Device; Raspberry Pi; About the Board;	A	7	3	
	Linux on Raspberry Pi				
	Raspberry Pi Interfaces; Programming Raspberry Pi	A	7	3	
-	with Python				
	Business Models and Processes Using IoT Business models and business model innovation	В	11	1	
					_
	Value creation in the internet of things; Business model scenarios for IoT	В	11	3	~~~
V	IoT Case Studies				— CO5
	IoT applications for smart homes, Environment	В	12	3	
	monitoring and agriculture				
	Smart city streetlights control	В	12	1	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-On Approach", Orient Blackswan Pvt. Ltd., First edition, 2015.
- Raj Kamal, "Internet of things Architecture and design principles", McGraw Hill Education Pvt. Ltd., First B. edition, 2017.

- Hanes David, Salgueiro Gonzalo, Grossetete Patrick, Barton Rob, Henry Jerome, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of Things", Pearson Education, First edition, 2017.
- B. RajkumarBuyya, Amir VahidDastjerdi, "Internet of Things Principles and Paradigms", Elsevier-Todd Green, 2016.
- Pethuru Raj, Anupama C. Raman, "The Internet of Things Enabling Technologies, Platforms, and Use Cases", CRC Press-Taylor & Francis Group, 2017.
- D. Charles Bell, "MySQL for the Internet of Things", Apress, First edition, 2016.
- http://nptel.ac.in/courses/106105166/

Programme	Course Code	Title
B.Sc (ECS)	19ECU17C	Artificial Intelligence

Preamble: This course introduces the field of Artificial Intelligence (AI), as well as the basic concepts and techniques that are used within the field.

Expected level of output : Conceptual Level

Department offered: Electronics and Communication Systems

Prerequisites: Knowledge in electronics and computer applications

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand Artificial Intelligence (AI) and its basic concepts and methods.	Understanding	Conceptual	Writing Skills
CO2	Implement agents using search algorithms.	Understanding	Conceptual	Group Assignment
CO3	Explain basic concepts, methods and theories of machine learning algorithms.	Analyzing	Analytical	Group Assignment
CO4	Identify appropriate AI methods to solve a given problem.	Analyzing	Analytical	Technical Presentation
CO5	Implement methods to solve problems using Natural Language Processing.	Understanding	Conceptual	Poster Presentation/ Charts

Modular Assessment Code : C (Theory-Concepts) Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Introduction Artificial Intelligence (AI); Components of AI; History of AI; Development of AI	A	1	3	
ī	Knowledge and Knowledge-Based systems; AI in the future; Applications of AI	A	1	2	CO1
•	Logic and Computation Classical concepts; Computational logic; First-order logic; Symbol tableau	A	1	2	COI
	Resolution; Unification; Predicate Calculus in problem-solving	A	1	3	
	Heuristic Search Search-based problems; Informed search; Evaluating functions and ordered research	A	3	3	
П	Water jug problem using breadth search	A	3	2	CO2
	Search in Game Playing AND/OR graph; Minimax problem	A	4	2	
	Alpha-beta search; Puzzle solving algorithm	A	4	3	
Ш	Knowledge Representation Structure of an RBS; Merits and demerits; Types of rules; Semantic nets	A	6	2	CO1 CO2

	Frames; Conceptual graphs; Conceptual dependency; Script	A	6	3	
	Automated Reasoning Default reasoning; Model-based reasoning; Case-based reasoning	A	7	3	_
	Multimodal reasoning; Truth maintenance system	A	7	2	
	Machine Learning A general view; Knowledge acquisition process	A	9	2	
IV	Automatic knowledge acquisition; Machine learning	A	9	3	CO3
	Analogical reasoning; Explanation based learning	A	9	2	— CO4
	Inductive learning; Knowledge acquisition tools	A	9	3	
	Natural Language Processing Computational model of language; Syntactic structure and analysis	A	15	3	
\mathbf{V}	Case: Grammar; Grammar Types	A	15	2	— CO4
	Natural language processing problems; Knowledge- based system approaches	A	15	3	— CO5
	Machine translation; Divergence	A	15	2	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Book:

A. R.B.Mishra, "Artificial Intelligence", PHI Learning Private Limited, 2011.

- Elaine Rich, Kevin Night, Shivashankar B Nair, "Artificial Intelligence", Tata McGraw Hill, Fifth reprint,
- Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013.
- Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", PHI, 2013.
- D. http://nptel.ac.in/courses/106105077/

Programme	Course Code	Title
B.Sc (ECS)	19ECU18	Embedded Systems with PIC

Preamble: This course will provide an exposure on 8-bit PIC microcontroller, various advanced protocols and interfacing of different peripherals with PIC microcontroller.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems** Prerequisites Knowledge in basic microcomputer system :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the fundamentals of embedded systems.	Remembering	Conceptual	Poster Presentation/ Charts
CO2	Understand the architecture of PIC microcontroller.	Understanding	Conceptual	Poster Presentation/ Charts
CO3	Write the assemble language and C programs.	Applying	Technical	SSA
CO4	Use the on-chip peripherals like I/O ports, timers, USART and ADC of PIC MCU.	Applying	Technical	Class Presentation
CO5	Demonstrate the design and implementation of embedded systems with PIC microcontroller.	Applying	Technical	Group Mini Project

Modular Assessment Code : D (Theory-Applications) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Embedded Systems Embedded Systems vs General Computing Systems	A	1	1	
	History of Embedded Systems; Classification of Embedded Systems	A	1	1	
	Major application areas; Purpose of Embedded Systems	A	1	1	CO1
	Elements of an Embedded Systems: System Core; Memory	A	2	3	
	Sensors and Actuators; Communication Interface; Other system components	A	2	2	
	Embedded system design flow		=	1	
	PIC Microcontrollers CISC and RISC Architectures	В	2	1	
	PIC Microcontroller Families; Architecture of PIC16F877A	В	2	3	
_	Arithmetic Logical Unit (ALU); Status Register	В	2	1	
	Memory Organization: Program memory, Data memory, EEPROM Data Memory	В	3	2	CO2
	Register File Structure: General purpose register file, Special function register file	В	3	2	
_	PCL and PCLATH; Stack; Oscillators; Reset Options	В	3	2	
	PIC16F877A Pin diagram and description	-	-	1	

	Instruction Set and Programming				
	Structure of Instructions; Addressing Modes	В	4	2	
	Midrange PIC MCU Instruction Set: Data transfer				_
	instructions, Arithmetic and Logic instructions,	В	4	4	
	Control transfer instructions, Bit manipulation	Ъ	4	4	
	instructions				_
III	Assembler Directives; Organization of a Program in Assembler Language	В	4	2	CO3
	Arithmetic and Logic operations using ALP	В	4	2	_
	Embedded C Fundamentals	ъ	4		_
	Structure of C Programs	C	1	1	
	Components of a C Program: Variables; Constants;				_
	Comments; Functions; Operators; Control Statements	C	1	3	
	Parallel Input and Output	В	5	1	
	Basic schematic for a I/O pin; TRIS Register	ь	3	1	
	Port A; Port B; Port C; Port D; Port E	В	5	3	
	Programs: Blinking of the LEDs; Keypad Interfacing	В	5	2	— CO4 CO5
IV	Seven Segment Display Interfacing; LCD Interfacing with PIC MCU	В	5	2	
	Timer Timero Medula, Timera Medula, Timero Medula	В	6	3	
	Timer0 Module; Timer1 Module; Timer2 Module	D.		2	_
	PWM using CCP module	В	6	2	
	Interrupts Interrupt sources and Associated registers	В	7	3	
	Serial Input and Output				_
	USART Serial Port: Asynchronous Mode;	В	8	4	
	Synchronous Mode				CO.4
\mathbf{V}	Serial reception and transmission through	В	8	1	- CO4 CO5
	HyperTerminal			1	_ 003
	10-Bit A/D Converter Module	D	0	2	
	Architecture of A/D converter in PIC; A/D conversion timing; A/D conversion module programming	В	9	3	
	On/Off temperature controller using on-chip ADC	В	9	2	_
	Revision	<i>D</i>		5	
	Total Hours			66	

Note: 80% Theory; 20% Programs CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. Shibu.K.V, "Introduction to Embedded Systems", Tata McGraw-Hill Education Private Limited, 2009.
- B. Fernando E. Valdes-Perez, Ramon Pallas-Areny, "Microcontrollers Fundamentals and Applications with PIC", CRC Press (Taylor & Francis Group), 2009.
- C. Richard Barnett, Larry O'Cull, Sarah Cox, "Embedded C Programming and the Microchip PIC", Thomson Delmar Learning, 2004.

- A. John B. Peatman, "Design with PIC Microcontrollers", Pearson Education Asia, 2002.
- B. Jivan Parab, Santosh A. Shinde, Vinod G.Shelake, Rajanish K.Kamat, Gourish M. Naik, "Practical Aspects of Embedded System Design using Microcontrollers", Springer Science + Business Media, 2008.
- C. http://nptel.ac.in/courses/117104072/

Programme	Course Code	Title
B.Sc (ECS)	19ECU19	Robotics and Arduino Programming

Preamble: This course focuses on the topics in robotics that relate to fundamentals, actuators, grippers, and sensors of robot systems. This course will also explain how to use Arduino to operate lights, motors, and sensors for making a robot.

Expected level of output : Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites Knowledge in instrumentation and microcontrollers :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the basic concepts of robots.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Identify the drives and end effectors of robot systems.	Understanding	Conceptual	Class Presentation
CO3	Familiarize with the most common robot sensors.	Understanding	Conceptual	Poster Presentation/ Charts
CO4	Explore the open source development platform (Arduino).	Applying	Technical	Simulation Exercises
CO5	Develop simple robot control systems using Arduino.	Applying	Technical	SSA

Modular Assessment Code : H (Theory-Technology) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Introduction to Robotics History; Laws of Robotics; Robot definition	A	1	2	
	Robot usage rules; Applications	A	1	1	='
I	Robot subsystems: Motion subsystem; Recognition subsystem; Control subsystem	A	1	3	CO1
	Classification of Robots: Cartesian Robot; Cylindrical Robot; Spherical Robot; Articulated Robot	A	2	3	-
	Actuators Classification of Actuators; Electric Actuators: Stepper motor	A	3	2	
	DC Motors; Servo motor; Selection of motors	A	3	2	
TT	Solenoids; Relays; Solid state switches	-	-	2	CO2
II	Hydraulic Actuators; Pneumatic Actuators	A	3	2	CO2
	Grippers Mechanical Grippers; Magnetic Grippers	A	3	2	
	Vacuum Grippers; Adhesive Grippers; Selection of grippers	A	3	1	-

	Sensors and Vision Systems				
	Sensor Classification; Internal Sensor; Position Sensors: Encoder, Potentiometer; LVDT	A	4	3	
	Velocity Sensors: Tachometer, Hall-effect sensor	A	4	1	
	Accelerometer and Gyroscope sensors	-	-	1	
III	Force Sensors: Strain-gauge sensor; Piezoelectric sensor	A	4	1	CO3
	External sensors; Contact type; Noncontact type: Proximity sensor, Semiconductor displacement sensor	A	4	2	
	Vision; Elements in a vision sensor; Steps in a vision system	A	4	2	
	Electronics for Robot The Arduino platform; Functional block diagram of Arduino	В	-	1	
	Arduino family of boards; Pin function of Arduino UNO	В	-	1	
VI	Fundamentals of Arduino Programming; Keywords; Inbuilt functions; Libraries; Arduino Boot loader	В	-	2	CO ₄
	Digital GPIO programming; Working with pins as input and output; Working with PWM outputs	В	-	2	
	Working with analog inputs using on-chip ADC; Serial communication between Arduino hardware and PC	В	-	2	
	Arduino interrupt programming	В	-	1	
	Robot Programming using Arduino Blinking of LED; Key interfacing	C	-	1	
	DC motor direction control; DC motor speed control using PWM; Servo motor control	С	-	2	
V	Interfacing LCD; Interfacing IR sensor; Interfacing Ultrasonic sensor; Tone generation	С	-	3	CO:
v	Line follower Robot; Obstacle avoider Robot; Self balancing Robot	С	-	3	
	PC control Robot; Wireless Robot	C		2	
	Revision	_		5	
	Total Hours			55	

Note: 80% Theory; 20% Programs CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. Subir Kumar Saha, "Introduction to Robotics", McGraw-Hill Education, Second Edition, 2014.
- B. Michael McRoberts, "Beginning Arduino", Second Edition, Apress, 2013.
- C. John-David Warren, Josh Adams, Harald Molle, "Arduino Robotics", Apress, 2011.

- A. Mikell Groover, Mitchell Weiss, Roger Nagel, Nicholas Odrey, Ashish Dutta, "Industrial Robotics: Technology - Programming and Applications", Tata McGraw-Hill Education, Second Edition (Special Indian Edition), 2012.
- B. R.Mittle, I.Nagrath, "Robotics and Control", Tata McGraw-Hill Education, 2003.
- C. S.R. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill, Second Edition.
- D. http://nptel.ac.in/courses/112103174/39

Programme	Course Code	Title
B.Sc (ECS)	19ECU20	Embedded Systems with PIC Lab

Preamble: This laboratory course is teaching students to design the PIC microcontroller-based embedded systems. Assembly and C languages are used in MCU Programming for various applications.

Expected level of output: Practical Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in assembly and C programming

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Design an embedded system with PIC microcontroller.	Applying	Technical	Poster Presentation /Chart
CO2	Trouble shoot microcontroller based electronic systems/products.	Analyzing	Analytical	Poster Presentation /Chart
CO3	Improve employability and entrepreneurship capacity due to knowledge up gradation on recent trends in embedded system design.	Applying	Technical	SSA

Modular Assessment Code : M (Practical - Applications)

Course Inputs:

Any 9 Experiments

Exp. No	Name of the Experiment	
1	Arithmetic Operations	
2	Four Bit Binary Counter	
3	LCD Interfacing	
4	Matrix Keyboard Interface	
5	Motion Detector using PIR	
6	Interfacing Proximity Sensor using Interrupt	
7	LED Flashing using On-chip Timer	
8	Servo Motor Control using PWM	
9	Frequency Measurement	
10	Wireless Relay Control using Bluetooth	
11	Temperature Measurement	
12	Interfacing Hall Effect Sensor	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical classes to be arranged in DSP Lab

Essential Equipments
 Essential Software
 Power Supply, CRO, Multi-meter, and PIC Programmer.
 MPLAB IDE, Complier, and PICKIT2/3 Software.

Programme	Course Code	Title
B.Sc (ECS)	19ECU21	Robotics and Arduino Programming Lab

Preamble: This course aims to demystify the Arduino hardware and software through hands-on work in the laboratory and gives the knowledge on creating simple robots.

Expected level of output : Practical Level

Department offered Electronics and Communication Systems :

Prerequisites : Knowledge in microcontroller and its programming

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Learn the Arduino programming language and IDE.	Understanding	Conceptual	Poster Presentation /Chart
CO2	Construct the circuits necessary for connecting sensors and actuators to the Arduino.	Applying	Technical	Poster Presentation /Chart
CO3	Design and construct the robots.	Applying	Technical	SSA

Modular Assessment Code : M (Practical - Applications) **Course Inputs:**

Any 9 Experiments

Exp. No	Name of the Experiment	
1	Blinking of LEDs	
2	Moving Message Display on LCD	
3	Tone Generation	
4	Speed Control of DC Motor	
5	Position Control of Servo Motor	
6	Proximity Detector	
7	Accelerometer Interface	
8	Obstacle Avoiding Robot using Ultrasonic Sensor	
9	Line-following Robot	
10	Wireless Controlled Robot	
11	Self-balancing Robot	
12	Pick and Place Robot	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical classes to be arranged in DSP Lab

Essential Equipments: Power Supply, CRO, Multi-meter and Arduino Board.

Essential Software : Arduino IDE.

Programme	Course Code	Title
B.Sc (ECS)	19ECU24	Modern Communication Systems

Preamble: This course will provide students with the fundamental concepts, principles, and advanced techniques to understand the various modern communication systems.

Expected level of output Conceptual and Analytical Level

Department offered : **Electronics and Communication Systems**

Prerequisites Knowledge in basic communication systems :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the basic elements of digital communication systems.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Demonstrate an understanding of various digital modulation and demodulation techniques.	Understanding	Conceptual	SSA
CO3	Analyze the performance of modulation and demodulation techniques in pulse communication.	Analyzing	Analytical	Simulation Exercises
CO4	Understand the concepts of wireless transmission, telecommunication systems and satellite communication.	Understanding	Conceptual	Poster Presentation/ Charts
CO5	Identify and solve basic communication problems.	Applying	Technical	Class Presentation

: H (Theory-Technology) **Modular Assessment Code Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Digital Modulation Techniques Types of digital modulation; Design features; Bit rate and Baud rate	A	9	1	
	ASK; ASK modulator; Coherent and Non-Coherent ASK demodulator; Advantage and disadvantages FSK; BFSK modulator; Coherent and Non-Coherent BFSK demodulator; Advantage and disadvantages		9	2	
I			9	2	CO2 CO5
	PSK; BPSK; BPSK modulator; Coherent BPSK demodulator	A	9	2	
	Differential BPSK; DPSK modulator; DPSK demodulator; Comparison of BPSK and DPSK	A	9	2	-
	QPSK; QPSK modulator; Coherent QPSK demodulator	A	9	2	
П	Pulse Modulation Techniques Sampling theorem; Classification of pulse modulation techniques	A	7	2	CO3
11	Generation and demodulation of PAM signals	A	7	1	CO5
	Generation and demodulation of PWM signals	A	7	1	-

					_	
	Generation and demodulation of PPM signals	A	7	2	<u>—</u>	
	PCM; Quantization of signals; Quantization error	A	7	3	<u></u>	
	Differential Pulse Code Modulation; Delta Modulation; Adaptive Delta Modulation	A	7	2		
	Wireless Transmission Signals; Antennas; Signal propagation	В	2	1		
	Multiplexing; FDM; TDM	В	2	2	<u></u>	
Ш	Frequency hopping spread spectrum; Cellular systems	В	2	2	CO4	
	Medium access control; Motivation for a specialized MAC	В	3	2	— CO5	
	SDMA; FDMA	В	3	2		
	TDMA; CDMA; Comparison	В	3	2		
	Telecommunication Systems Global System for Mobile (GSM): Mobile services; System architecture	В	4	2		
IV	Localization and calling; Security	В	4	2	CO4	
-,	Handover; Basic classes of handover	В	4	2	_	
	Digital Enhanced Cordless Telecommunication (DECT); System architecture; Protocol architecture	В	4	2	_	
	Satellite Communication Frequency Allocations for Satellite Services; Kepler's I,II,II laws; Orbital parameters	С	-	2		
	Orbital perturbations, station keeping	С	-	1		
V	Geo stationary and non Geo-stationary orbits	С	-	1	CO4	
	Earth station technology; Transponders	С	-	2		
	Down-link design, up-link design	C	-	2	<u></u>	
	Introduction to VSAT systems	C	-	1		
	Revision			5		
	Total Hours			55		

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. T.L. Singal, "Analog and Digital Communications", Tata McGraw Hill education Pvt. Ltd, 2012.
- B. Jochen Schiller, "Mobile Communications", Dorling Kindersley (India) Pvt. Ltd, 2009.
- C. Dennis Roddy, "Satellite Communications", MGraw Hill, Millan, Fourth edition, 2013.

- A. William C.Y. Lee, "Mobile Cellular Telecommunication", Second Edition, McGraw Hill Publications, 1995.
- B. George Kennedy, Bernard Davis, SRM Prasanna, "Electronic Communication System", Tata McGraw Hill education Pvt. Ltd, Fifth Edition, 2012.
- C. D.C. Agarwal, "Satellite communication", Khanna publishers, Third Edition, 1995
- D. http://nptel.ac.in/courses/117101051/
- E. http://nptel.ac.in/courses/117105077/

Programme	Course Code	Title
B.Sc (ECS)	19ECU25	Computer Networks

Preamble: This course is to provide students with an overview of the concepts and fundamentals of data communication, various types of computer networks and their protocols.

Expected level of output Conceptual and analytical Level

Department offered : **Electronics and Communication Systems**

Prerequisites : Knowledge in Computer Systems

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the fundamental concepts of computer networking.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Enumerate the layers of the OSI model and TCP/IP, and explain the functions of each layer.	Understanding	Conceptual	SSA
CO3	Identify the different types of network topologies and protocols.	Understanding	Conceptual	Class Presentation
CO4	Identify the different types of network devices and their functions within a network.	Understanding	Conceptual	Class Presentation
CO5	Expertise in basic protocols of computer networks such as the design, implement and maintenance of individual networks.	Applying	Technical	Simulation Exercises

Modular Assessment Code : H (Theory-Technology) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	Data Communications Components; Data flow; Networks: Physical structures; Categories of Networks; Protocols and Standards	В	1	2		
	Guided media Twisted pair cable; Coaxial cable; Fiber optic cable	В	7	2		
I	Unguided media Radio waves; Microwaves; Infrared ray	В	7	2	CO1 - CO5	
	Reference Models OSI reference model; TCP/IP reference model; Comparison of OSI & TCP/IP reference model	A	1	2		
	Example Networks The Internet; The ARPANET; NSFNET; Architecture of the Internet	A	1	3		
	Data Link Layer Design issues; Framing; Error control; Flow control	A	3	3	GOA	
II	Error detection and correction codes	A	3	2	CO2 CO3	
	Example Data Link Protocols Packet over SONET; Asymmetric digital subscriber Loop	A	3	2	CO5	

	Medium Access Sub layer		_	_	
	Channel allocation problem; Multiple Access Protocols: Pure ALOHA, Slotted ALOHA	A	4	2	
Ш	CSMA with Collision Detection; Collision free protocols	A	4	3	CO2
	Broadband Wireless Comparison of 802.16 with 802.11 and 3G; The 802.16 MAC sub layer protocol; The 802.16 frame structure	A	4	3	— CO3 CO4
	Repeaters, Hubs, Bridges, Switches, Routers and Gateways	A	4	2	
	Network Layer Design issues, Routing algorithms: Broadcast routing	A	5	2	
	Multicast routing, Any cost routing	A	5	2	CO2 CO3
IV	Congestion control algorithms Approaches to congestion control; Traffic aware routing	A	5	3	
	The Network Layer in The Internet IPV4; IP address; Subnets; IPV6	A	5	3	
	Internet Control Protocols ICMP; ARP; ICMPV6	A	5	2	
	Transport Layer Service provided to the upper layers; Transport service primitives	A	6	2	
	UDP: Introduction to UDP; TCP:TCP service model; TCP protocol; TCP/IP protocol	A	6	2	
V	Application Layer Domain Name System (DNS): DNS Namespace; Name servers	A	7	2	— CO2 CO3 CO4
	Electronic Mail: Architecture; User agent; SMTP; POP and IMAP; FTP	В	26	2	
	WWW Architecture; HTTP: HTTP Transaction; Proxy servers; HTTPS	В	27	2	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- Tannenbaum, D. Wetherall, "Computer Networks", Prentice Hall, Pearson, Fifth Edition, 2010. A.
- Behrouz A. Forouzan, "Data Communications and Networking", Tata McGraw-Hill, Fourth Edition, 2000.

- A. AchyutGodbole, "Data Communication and Networks", TMH, 2007.
- Uyless Black, "Computer Networks Protocols, Standards, and Interfaces", Second Edition, PHI. Andrew S. Tanenbaum, "Computer Networks", PHI, Fourth Edition, 2010. B.
- C.
- D. https://www.cse.iitk.ac.in/users/dheeraj/cs425/

Programme	Course Code	Title
B.Sc (ECS)	19ECU26	Industrial and Power Electronics

Preamble: This course presents analysis and control methods of power electronics circuits, converting and controlling of electric power by using semiconductor switching power devices.

Expected level of output : Conceptual and Application Level

Department offered : Electronics and Communication Systems

Prerequisites : Knowledge in electronic devices and circuits

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Acquire knowledge about various power semiconductor devices.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Identify basic requirements for power electronics based design applications.	Understanding	Conceptual	SSA
CO3	Analyze different power converters and control with their applications.	Analyzing	Analytical	Class Presentation
CO4	Design and develop various power electronic circuits for industrial applications.	Applying	Technical	Group Mini Project
CO5	Troubleshoot power electronics circuits.	Applying	Technical	SSA

Modular Assessment Code : D (Theory-Applications)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Power Devices and its Applications in Power Control Power Transistors: MOSFET; IGBT	A	2	2	
	Types of power electronic circuits; Thyristor turn-on methods	A	1 & 4	2	
I	Thyristor protection: Design of Snubber circuits	A	4	1	CO1
	Over voltage protection; Over current protection; Gate protection	A	4	2	
	UPS; HVDC; Types of HVDC link	A	11	2	
	Static switches; Static circuit breakers	A	11	2	
	Converters and Commutation Techniques Principle of phase-controlled converter; Single phase	С	10	2.	
	full converters		10	<i></i>	
II	Single-phase dual converters	C	10	1	CO2
11	Principle of Three-phase half-wave converters; Three- phase full converters	С	10	2	CO3
	Introduction to Commutation: Class A, Class B, Class C, Class D, Class E and Class F	A	5	4	
Ш	Inverters and Cycloconverters Inverters: Operating principle; Single-phase bridge inverter	A	8	2	CO2 CO3

	Three-phase bridge inverter; Three-phase 180° mode VSI	A	8	2	
	Pulse width modulated inverters: Single-pulse modulation; Multiple-pulse modulation	A	8	2	
	Sinusoidal-pulse Modulation(SPWM); Realization of PWM in single phase bridge inverters	A	8	2	
	Cycloconverters: Single-phase Cycloconverters	С	11	1	
	Three-phase Cycloconverters	С	11	2	
	Choppers DC Choppers; Principle of Chopper operation	A	4	2	
IV	Step-up Choppers; Types of Chopper circuits	A	4	2	CO2 CO3
	Switching regulators: Buck regulator	A	5	1	
	Boost regulator; Buck-Boost regulator	A	5	2	
	Uninterruptible power supply (UPS)	A	-	1	
	Thyristors Industrial Applications Temperature control: Phase-control circuits for temperature regulation; Illumination control: Illumination control using SCR	В	7	3	
	Automatic street lighting circuit using LDR and SCR; Emergency light using SCR	В	7	2	CO4 CO5
\mathbf{V}	Automatic water level indicator using SCR; Automatic battery charger using SCR	В	7	2	
	Burglar alarm circuit using SCR; Flip-flop circuit using SCR	В	7	2	
	Battery operated inverter circuit using power transistor; SCR-UJT operated timer circuit	В	7	2	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Fourth Edition, 2011.
- B. S. K. Bhatacharya, S. Chattejee, "Industrial Electronics and Control", Tata McGraw Hill, Reprint 2011.
 C. Muhammad Rashid, "Power electronics, Circuits, Devices & Applications", Prentice Hall Edition, Third Edition, 2004.

- A. Gyanendra K. Mithal, "Industrial and Power Electronics", Khanna Publishers, 19th Edition, 2001.
- B. http://nptel.ac.in/courses/108101038

Programme	Course Code	Title
B.Sc (ECS)	19ECU27	Industrial and Power Electronics Lab

Preamble: This course aims at obtaining characteristics of power electronic devices with practical design, measurement and applications.

Expected level of output Practical Level

Department offered : **Electronics and Communication Systems Prerequisites** : Knowledge in Power Electronic Devices

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Elucidate the basic operation of various power electronic devices.	Understanding	Conceptual	Poster Presentation /Chart
CO2	Analyze the response of power electronic circuits.	Analyzing	Analytical	SSA
CO3	Design, develop and troubleshoot the power control circuits for various industrial applications.	Applying	Technical	Poster Presentation /Chart

Modular Assessment Code

: M (Practical - Experiments)

Course Inputs:

Any 9 Experiments

Exp.	Name of the Experiment	
1	Burglar Alarm	
2	Power Inverter	
3	Automatic Street Light Controller	
4	Emergency Lamp	
5	Thyristor Chopper	
6	Triggering of SCR by R, C and DIAC	
7	Commutation Techniques (self and complementary)	
8	Speed Control of DC Motor using SCR and UJT	
9	TRIAC Flasher	
10	Fan Regulator using TRIAC	
11	Design of Snubber Circuit	
12	Full Wave Rectifier using SCR	
	Repeat/Revision	6
	Total Hours	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Circuit Lab.

Essential Equipments: Power Supply, Function Generator, CRO and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU28	Modern Communication Systems Lab

Preamble: This course is to improve the students' ability in understanding the concepts of digital modulation and demodulation techniques.

Expected level of output : Practical Level

Department offered: Electronics and Communication Systems

Prerequisites : Knowledge in digital communication techniques

Course Outcomes:

After successful completion of this course, the students will be able to

Course outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Know the working of digital communication systems.	Understanding	Conceptual	Simulation Exercises
CO2	Identify and analyze the major components used in digital communication systems.	Analyzing	Analytical	Technical Presentation
CO3	Design and demonstrate the electronic circuits, to carry out modulation and demodulation experiments.	Applying	Technical	Technical Presentation

Modular Assessment Code

: L (Practical - Experiments)

Course Inputs:

Any 9 Experiments

Exp.	Name of the Experiment	
1	Signal Sampling and Reconstruction	
2	Modulation and Demodulation of PAM	
3	Modulation and Demodulation of PWM	
4	Modulation and Demodulation of PPM	
5	Amplitude Shift Keying	
6	Frequency Shift Keying	
7	Binary Phase Shift Keying	
8	Differential Phase Shift Keying	
9	Time Division Multiplexing	
10	Frequency Division Multiplexing	
11	Study of PCM	
12	Study of QPSK	
	Repeat/Revision	6
	Total Sessions	33

CIA: 20 Marks; End Semester: 30 Marks

Note: Practical Classes to be arranged in Electronic Communication Lab

Essential Equipments: Power Supply, Function Generator, DSO, Communication trainers and Multi-meter.

Programme	Course Code	Title
B.Sc (ECS)	19ECU30A	Mobile Application Development

Preamble: This course will introduce students to develop and enhance programming skills by focusing upon issues, techniques and applications for mobile platform.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites : Knowledge in basic programming languages

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Describe the basic components of an Android application.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Define the lifecycle methods of Android application components.	Understanding	Conceptual	Class Presentation
CO3	Describe the basics of event handling in Android.	Understanding	Conceptual	SSA
CO4	Understand the interaction between user interface and underlying application infrastructure.	Understanding	Conceptual	Simulation Exercises
CO5	Implement Android applications using an Android Software Development Kit (SDK).	Applying	Technical	Simulation Exercises

: H (Theory-Technology) **Modular Assessment Code Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	Introduction Mobile Application Programming; Different Platforms; Architecture and working of Android	A	1	2		
т	Android Development Environment Android; Advantages and Future of Android	A	1	1	_	
1	Android Development Tools The Android Virtual Device Manager; Android SDK Manager; The Android Emulator	A	2	1	CO1	
	The Dalvik Debug Monitor Service; The Android Debug Bridge; The Hierarchy Viewer and Lint Tool; Monkey and Monkey Runner	A	2	2		
п	Creating Applications and Activities Application Manifest File; Resources: Styles and Themes; Drawables; Layouts; Animations; Menus	A	3	3	CO1 CO2	
	Building User Interfaces (UI) Fundamental Android UI Design; Layouts; Fragments	A	3	2		
	Buttons; Menus; Dialogs; Graphics Resources: Introducing the Drawables; Implementing Images; Core Drawable Subclasses	A	3	2	-	

	Using Bitmap; PNG; JPEG; GIF Images in Android; Creating Animation in Android	A	4	2	
Ш	Handling User Interface (UI) Events: An Overview of UI Events in Android; Listening for and Handling Events; Handling UI Events via the ViewClass	A	4	2	CO1 CO3
	Event Callback Methods; Handling Click Events; Touch screen Events; Keyboard Events; Context Menus	A	4	2	
	Content Providers An Overview of Android Content Providers; Defining a Content Provider; Working with a Database	A	5	1	
IV	Intents and Intent Filters: Intent; Implicit Intents; Explicit Intents	A	5	2	CO4 CO5
	Intents with Activities; Intents with Broadcast Receivers	A	5	1	
	Attaching Actions; Issuing Notification Android Notification Examples	A	5	2	
	Location-Based Services Selecting a Location Provider; Proximity Alerts; Map-Based Activities	A	13	2	CO.4
v	Bluetooth Communications; Network and Internet Connectivity	A	16	2	— CO4 CO5
	Managing Wi-Fi; Transferring Data Using Wi-Fi Direct	A	16	2	
	Revision			2	
	Total Hours			33	

CIA: 25 Marks; End Semester: 75 Marks

Text Book:

A. Reto Meier "Professional Android 4 Application Development", Wiley Publications, 2013.

- Thomas Duffy, "Programming with Mobile Applications: Android, iOS, and Windows Phone 7", Cengage Learning publications, 2013.
- http://nptel.ac.in/courses/106106147/10

Programme	Course Code	Title
B.Sc (ECS)	19ECU30B	PC Hardware and Troubleshooting

Preamble: This course is useful as it equips students with basic knowledge about personal computers. The students will also learn about PC hardware and software, maintenance and troubleshooting of PC systems.

Expected level of output: Conceptual and Application Level

Department offered **Electronics and Communication Systems** Prerequisites Basic knowledge in computer fundamentals :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Describe the different hardware components inside and connected to a computer.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Understand the requirement of both hardware and software to work for a PC.	Understanding	Conceptual	Class Presentation
CO3	Learn how display adapters and serial interface works.	Understanding	Conceptual	SSA
CO4	Install/connect associated peripherals.	Applying	Technical	Poster Presentation/ Charts
CO5	Diagnose and troubleshoot microcomputer systems hardware and software, and other Peripheral equipments.	Analyzing	Analytical	Group-mini Project

Modular Assessment Code : D (Theory-Applications) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Microcomputer System & Its Peripherals Introduction; Computer organization; Memory	A	1	1	
I	Arithmetic and Logic unit; Control unit; Microprocessor; Operating system and its types	A	1	2	CO1
	Peripheral devices; Keyboard; Mouse	A	2	1	
	Scanner; CD-ROM drive; Monitor	A	2	1	
-	Printer: Laser printer; Inkjet printer	A	2	1	
	PC Hardware Hardware; BIOS; DOS interaction; The PC family: OG and NG; PC hardware	A	3	2	CO2
II	Inside the System Box SMPS; Motherboard; Motherboard components; Motherboard logic	A	3	2	
	Front panel controls; Floppy disk controller; Hard disk controller; Post sequence	A	3	2	
	BIOS set up; Sound card and MIDI	A	3	1	
111	Display Adapters CRT display; CRT controller	A	11	1	CO2
III	Color Graphics Adapter (CGA) CGA circuit description	A	11	2	CO3

	Second generation graphics adapters; New trends in				
	display controllers; Display adapters; Device	A	11	2	
	interface				_
	USB Serial Interface	A	12	1	
	Installation and Preventive Maintenance				
	System Configuration; Pre-Installation planning;	A	13	2	
	Installation practice				
IV	Routine checks; PC Assembling and Integration	A	13	1	CO4
	BIOS setup; Standard CMOS setup	A	13	1	
	Advanced chipset features setup; Preventive	Α	13	2	
	Maintenance; Problem causes	A	13	2	
	Troubleshooting				
	Computer faults; Nature and types of faults;	A	14	2	
	Troubleshooting tools				
\mathbf{V}	Bus faults; Faults elimination process	A	14	1	CO5
	Systematic Troubleshooting	Α	14	2	
	Symptoms, Observation and Analysis	Л	1+		
	Fault Diagnosis; Fault rectification	A	14	1	
	Revision			2	
	Total Hours			33	

CIA: 25 Marks; End Semester: 75 Marks

A. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, Second Edition, 2010.

- A. D. Balasubramanian, "Computer Installation and servicing", Second Edition, 2010.
- B. Kai Hwang, "Advanced Computer Architecture", Tata McGraw Hill, 2008.

Generic Elective Courses (GE) Offered by ECS Department

Programme	Course Code	Title
B.Sc (IT /CT/CS/CSA/SS/Cog.)/ BCA	19GEU48	Embedded Systems

Preamble: This course is designed to understand the embedded controller architecture and programming language. This course is to make students aware of maintaining microcontroller based equipments/systems.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites : Knowledge in Digital Electronics

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the fundamentals of embedded systems, different components of 8051 microcontroller.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Know the instruction set and addressing modes of 8051.	Understanding	Conceptual	Class Presentation
CO3	Write and execute assembly language programs and embedded C programs for the given applications.	Analyzing	Analytical	SSA
CO4	Familiar with programming environment (IDE) used to develop embedded systems.	Understanding	Conceptual	Simulation Exercises
CO5	Interface microcontroller with external hardware circuitry/Peripheral.	Analyzing	Analytical	Class Presentation

Modular Assessment Code : H (Theory-Technology) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	8051 Architecture Digital Computer; CPU; ALU; Control Unit; Address Bus; Data Bus; Control Signals; Memory; Peripherals; Microprocessor; Microcontroller	A	1	2	
I	Instruction; Mnemonics; Program; Low level Language; High Level Language; Assembler; Compiler; Interpreter; Simulator; Integrated Development Environment (IDE)	A	1	2	CO1
	Microcontrollers for Embedded Systems; Criteria for choosing microcontroller	A	1	1	
	Overview of 8051 family; Architecture of 8051	A	1	2	
	Registers; 8051 Memory organization: RAM allocation; Program memory	A	2	2	
	Flag bits and PSW register	A	2	1	
	Instruction Set and Addressing Modes 8051instruction set: Data transfer instructions	A	2	3	
II	Arithmetic, Logical and Boolean instructions	A	6	4	CO2
	Branching instructions	A	4&6	2	
	Addressing modes	A	5	1	
Ш	Assembly language Programming Introduction to ALP: Data types and assembler directives	В	5-9	1	CO3

	Unsigned Arithmetic operations: Addition of 8 bit data, Subtraction of 8 bit data, Multiplication of 8 bit	В	5-9	2	
	data, Division of 8 bit data.	D	3-9		
	Logical operations: Demorgan's theorem, Verification of Boolean functions	В	5-9	2	
	Counting and looping techniques: Addition of an array of data, Block data transfer, Larger of two numbers, Smaller of two numbers	В	5-9	3	
	Time delay programming and delay calculation in ALP, Square wave generation	В	5-9	2	
	Embedded C Programming Introduction to Embedded C: C data types and operators for 8051	A	7	1	
	Arithmetic and logical operations using C	A	7	2	
	I/O port programming: Single bit operations in C	A	7	2	
IV	IDE and Simulation Tools Introduction to Keil micro vision; Project wizard; Text file; Debugging; Creating hex files	C	-	1	CO3 CO4
	Introduction to Simulation software; Familiarization of library tools	С	-	1	
	Project wizard; Editor window; Component selection	С	-	1	
	Wiring of circuit diagram; Loading hex file in to software; Simulation, simple designs	С	-	1	_
	Real World Applications I/O Interfacing: Key; LED and LCD Interfacing	A	12	3	
	ADC Interfacing; Sensor interfacing; DAC Interfacing	A	13	3	— CO3
V	Relay interfacing	A	16&17	1	CO5
	Interfacing stepper motor and DC motor	A	16&17	2	_
	Traffic light control, Automatic water level monitoring	-	-	2	
	Revision			5	
	Total Hours			55	

Note: 70% Theory; 30% Programs CIA: 25 Marks; End Semester: 75 Marks

Text Books/Manuals:

- A. Muhammad Ali Mazidi, Janice GillispieMazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems using Assembly and C", Pearson, Second edition, 2008.
- B. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", TataMcGraw-Hill Education, 2014.
- C. User manuals of PROTEUS, OrCAD.

- A. D. KarunaSagar, "Microcontroller 8051", Narosa Publishing House, 2011.
- B. A.P. Godse, D.A. Godse, "Microprocessor and Microcontroller", Technical Publications, First Edition, 2007.
- C. http://nptel.ac.in/courses/106108100/
- D. http://nptel.ac.in/courses/117104072/

Programme	Course Code	Title
B.Sc (IT /CT/CS/CSA/SS/Cog.)/ BCA	19GEU49	Robotics and Applications

Preamble: This course focuses on the fundamentals, actuators, grippers, and sensors of robot systems and it also explains how to use Arduino to operate lights, motors, and sensors for making a robot.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites Knowledge in instrumentation and microcontrollers :

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the basic concepts and types of robots.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Identify the drives and end effectors of robot systems.	Understanding	Conceptual	Class Presentation
CO3	Familiarize with the most common robot sensors.	Understanding	Conceptual	SSA
CO4	Explore the open source development platform (Arduino).	Applying	Technical	Class Presentation
CO5	Develop simple robot control systems using Arduino.	Applying	Technical	Simulation Exercises

Modular Assessment Code : H (Theory-Technology)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Introduction to Robotics History; Laws of Robotics; Robot definition	A	1	2	
	Robot usage rules; Applications	A	1	1	-
I	Robot subsystems: Motion subsystem; Recognition subsystem; Control subsystem	A	1	3	CO1
	Classification of Robots: Cartesian Robot; Cylindrical Robot; Spherical Robot; Articulated Robot	A	2	3	
	Actuators Classification of Actuators; Electric Actuators: Stepper motor	A	3	2	
	DC Motors; Servo motor; Selection of motors	A	3	2	
II	Solenoids; Relays; Solid state switches	-	-	2	- CO2
11	Hydraulic Actuators; Pneumatic Actuators	A	3	2	
	Grippers Mechanical Grippers; Magnetic Grippers	A	3	2	_
	Vacuum Grippers; Adhesive Grippers; Selection of grippers	A	3	1	
III	Sensors and Vision Systems Sensor Classification; Internal Sensor; Position Sensors: Encoder, Potentiometer; LVDT	A	4	3	CO3

					<u>—</u>
	Velocity Sensors: Tachometer, Hall-effect sensor	A	4	1	
	Accelerometer and Gyroscope sensors	-	-	1	
	Force Sensors: Strain-gauge sensor; Piezoelectric sensor	A	4	1	_
	External sensors; Contact type; Noncontact type: Proximity sensor, Semiconductor displacement sensor	A	4	2	
	Vision; Elements in a vision sensor; Steps in a vision system	A	4	2	
	Electronics for Robot The Arduino Platform; Functional block diagram of Arduino	В	-	1	
	Arduino family of boards; Pin function of Arduino UNO	В	-	1	
VI	Fundamentals of Arduino Programming; Keywords; Inbuilt functions; Libraries; Arduino Boot loader	В	-	2	CO4
	Digital GPIO programming; Working with pins as input and output; Working with PWM Outputs	В	-	2	
	Working with Analog Inputs using on-chip ADC; Serial Communication between Arduino hardware and PC	В	-	2	_
	Arduino Interrupt Programming	В	-	1	
	Robot Programming using Arduino Blinking of LED; Key interfacing	C	-	1	
	DC motor direction control; DC motor speed control using PWM; Servo motor control	С	-	2	
v	Interfacing LCD; Interfacing IR sensor and Ultrasonic sensor; Tone generation	C	-	3	CO5
V	Line follower Robot; Obstacle avoider Robot; Self balancing Robot	C	-	3	
	Wireless Robot; PC control Robot	C	-	2	
	Revision			5	
	Total Hours			55	

CIA: 25 Marks; End Semester: 75 Marks

Text Books:

- A. Subir Kumar Saha, "Introduction to Robotics", McGraw-Hill Education, Second Edition, 2014.
- B. Michael McRoberts, "Beginning Arduino", Second Edition, Apress, 2013.
- C. John-David Warren, Josh Adams, HaraldMolle, "Arduino Robotics", Apress, 2011.

- A. MikellGroover, Mitchell Weiss, Roger Nagel, Nicholas Odrey, Ashish Dutta, "Industrial Robotics: Technology - Programming and Applications", Tata McGraw-Hill Education, Second Edition (Special Indian Edition), 2012.
- B. R.Mittle, I.Nagrath, "Robotics and Control", Tata McGraw-Hill Education, 2003.
- C. S.R. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill, Second Edition.
- D. http://nptel.ac.in/courses/112103174/39

Programme	Course Code	Title
B.Sc (IT /CT/CS/CSA/SS/Cog.)/ BCA	19GEU50	PC Hardware

Preamble: This course equips students with basic knowledge about personal computers. The students can learn about PC hardware and software, maintenance and troubleshooting of PC systems.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems Prerequisites** : Basic knowledge in computer fundamentals

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Describe the different hardware components inside and connected to a computer	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Understand the requirements of computer hardware and software to work.	Understanding	Conceptual	Class Presentation
CO3	Learn how display adapters and serial interface cards works	Understanding	Conceptual	SSA
CO4	Install/connect associated peripherals	Applying	Technical	Poster Presentation/ Charts
CO5	Diagnose and troubleshoot microcomputer systems hardware and software, and other Peripheral equipment.	Analyzing	Analytical	Simulation Exercises

Modular Assessment Code : H (Theory-Technology) **Course Inputs:**

Unit	Description	Text Book	Chapter	Instructional Hours	COs
	Microcomputer System & Its Peripherals Introduction; Computer organization; Memory	A	1	1	
	Arithmetic and Logic unit; Control unit; Microprocessor; Operating system and its types	A	1	2	
I	Peripheral devices ; Keyboard; Mouse and trackball	A	2	2	CO1
	Scanner; CD-ROM drive; CRT monitor	A	2	2	
	Printer; Functions; Characteristics; Dot matrix impact printer	A	2	2	
	Laser printer, Inkjet printer	A	2	1	
	PC Hardware Hardware; BIOS; DOS interaction; The PC family: OG and NG; PC hardware; OG	A	3	2	
II	Inside the System Box SMPS; Motherboard; Motherboard components; Motherboard logic	A	3	3	CO2
	Front panel controls; Floppy disk controller; Hard disk controller; Post sequence	A	3	3	
	BIOS set up; Sound card and MIDI	A	3	2	

	Display Adapters	A	11	2	
	CRT display; CRT controller Color graphics adapter (CGA)	Α	11	2	
	CGA circuit description				
Ш	Second generation graphics adapters; New trends in display controllers; Display adapters; Device interface	A	11	2	CO3
	Serial Interfaces Data communication fundamentals; RS-232 interface	A	12	2	
IV	Serial port in original PC; USB; Firewire (IEEE 1394)	A	12	2	
	Installation and Preventive Maintenance System configuration; Pre-Installation planning; Installation practice	A	13	2	
	Routine checks; PC Assembling and Integration	A	13	2	
	BIOS setup; Standard CMOS setup	A	13	3	CO4
	Advanced chipset features setup; Preventive maintenance	A	13	2	
	Problem causes; How DOS gets Control; DOS: The Resource Manager	A	13	2	
	Troubleshooting Computer faults; Nature and types of faults; Troubleshooting tools	A	14	2	
	Bus faults; Faults elimination process	A	14	1	
V	Systematic Troubleshooting Symptoms, Observation and analysis	A	14	2	CO5
	Fault diagnosis; Fault rectification	A	14	2	_
	Virus; Data recovery tools from DOS	A	14	2	
	Revision			5	

CIA: 25 Marks; End Semester: 75 Marks

Text Book:

A. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, Second Edition, 2010.

- A. D. Balasubramanian, "Computer Installation and servicing", Second Edition, 2010.
- Kai Hwang, "Advanced Computer Architecture", Tata McGraw Hill, 2008.
- http://nptel.ac.in/courses/106106092/3
- D. http://nptel.ac.in/courses/106106144/3

Extra Departmental Course (EDC) Offered by ECS **Department**

Programme(s)	Course Code	Title
Except B.Sc (ECS)	19SEC09	PC Hardware, Installation and Troubleshooting

Preamble: This course covers the fundamentals of computer hardware and software. The students will also learn about assembling, installation, and troubleshooting of computer systems.

Expected level of output Conceptual and Application Level

Department offered : **Electronics and Communication Systems**

Prerequisites Basic knowledge in computer fundamentals

Course Outcomes:

After successful completion of this course, the students will be able to

Course Outcome	Description	Bloom's Taxonomy Level	Skill	Capstone Evaluation
CO1	Understand the basic computer system and its components.	Understanding	Conceptual	Poster Presentation/ Charts
CO2	Identify and analyze the computer hardware.	Understanding	Conceptual	SSA
CO3	Learn how display adapters and serial interface works.	Understanding	Conceptual	Class Presentation
CO4	Install, configure, and remove software and hardware.	Applying	Technical	Poster Presentation/ Charts
CO5	Diagnose and troubleshoot microcomputer systems hardware and software, and other Peripheral equipments.	Analyzing	Analytical	Group-Mini Project

Modular Assessment Code

: D (Theory-Applications)

Course Inputs:

Unit	Description	Text Book	Chapter	Instructional Hours	COs	
	PC System					
	Introduction; Functional blocks; System unit;	A	1	2		
	Display unit					
	Inside PC	Α	2	1	CO1	
I	Motherboard; BIOS; CMOS-RAM	Λ	2	1	CO2	
	Motherboard types; Processors; Chipsets	A	2	1	CO2	
	On-Board Memory	Α	2	1		
	PC's Memory organization	A	3	1		
	Memory packaging; I/O Ports; USB port	A	3	1		
	Floppy Disk Drive and Controller	A	5	2		
II	Hard Disk Drive and Controller	A	6	2	CO2	
	MMX; Multimedia extensions	A	7	2		
	Input and Output Devices	A	8	1		
Ш	Keyboard; Mouse; Scanner	A 	0	1	CO3	
	Digital Camera ; Laser Printer	A	8 & 11	1		

	Monitors and Display Adapters Display; Video basics; VGA monitors	A	9	2	
	Digital display technology; LCD, LED	A	9	2	
	PC Installation	A	12	2	
	Fundamental to Operating Systems MS-DOS Programming	-	-	2	
IV	Installation of OS: Erasing existing installations (clean install); Hard drive partitions and file systems; Installing OS; Product activation; Upgrade OS	-	-	2	— CO4
	Troubleshooting and Servicing POST; Troubleshooting the motherboard	A	13	1	
	Troubleshooting the keyboard	A	13	1	
	Troubleshooting the disk devices	A	13	1	
\mathbf{V}	Troubleshooting the printer	A	13	1	
	Maintenance Diagnostic Software; Data Security	A	14	2	_
	Computer and Communication Networking Modem; Internet	A	15	1	
	Revision			2	
	Total Hours			33	

Note: 100% Theory CIA: 100 Marks

Text Book:

A. D. Balasubramanian, "Computer Installation and servicing", Tata McGraw Hill Education Pvt. Ltd., Second Edition, 2005.

- A. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, Second Edition, 2002.
- B. http://nptel.ac.in/courses/106106092/3
- C. http://nptel.ac.in/courses/106106144/3

Annexure-I

Skill Enhancement Courses - Extra Departmental Courses (EDC)											
	Course Code	Course Title	T/P	Ins. Hrs/ Week	MAP Code	Examination					
Offering Department						Dur Hrs	CIA	ES	Total Marks	Cre dits	No of Seats
Languages	19SEC01	Aalumai Thiran	T	3	С	-	100	-	100	3	60
Languages	19SEC02	Spoken Hindi	T	3	С	-	100	-	100	3	60
English	19SEC03	Mass Communication	T	3	С	-	100	-	100	3	60
Computer Science	19SEC04	Web Designing	T+P	3	M	-	100	-	100	3	120
Computer Science & Applications	19SEC05	User Interface Design	Т	3	С	-	100	-	100	3	120
Software Systems	19SEC06	Animation Techniques	T+P	3	M	-	100	-	100	3	60
Information Technology	19SEC07	Multimedia	T+P	3	M	-	100	-	100	3	120
Computer Technology	19SEC08	Corel Draw	T+P	3	M	-	100	-	100	3	120
Bioscience	19SEC10	Diabetic Management	Т	3	С	-	100	-	100	3	60
Bioscience	19SEC11	Clinical Laboratory Techniques	T	3	С	-	100	-	100	3	60
Bioscience	19SEC12	Bio Entrepreneurship	T	3	C	-	100	-	100	3	60
Bioscience	19SEC13	Basic Bio Informatics	Т	3	С	-	100	-	100	3	60
Costume Design & Fashion	19SEC14	Basic Cosmetology	P	3	M	-	100	-	100	3	30
Costume Design & Fashion	19SEC15	Embellishment and Accessory Designing	P	3	M	-	100	-	100	3	30
CSHM	19SEC16	Basic Cooking Techniques	T	3	С	-	100	-	100	3	30
CSHM	19SEC17	Dining Etiquettes	T	3	C	-	100	-	100	3	30
Commerce PA	19SEC18	Personal Financial Services	Т	3	С	-	100	-	100	3	120
Commerce	19SEC19	Accounting Software	P	3	M	-	100	-	100	3	100
Commerce BPS & CM	19SEC20	Marketing Systems	Т	3	С	-	100	-	100	3	120
Commerce CA & BA	19SEC21	Neuro Marketing	Т	3	С	-	100	-	100	3	190
Commerce AF & BI	19SEC22	Strategic Franchising	Т	3	С	-	100	-	100	3	120
BBA & ISM	19SEC23	Executive Development	Т	3	Е	-	100	-	100	3	60
BBA CA	19SEC24	Entrepreneurship and Project Management	Т	3	С	-	100	-	100	3	120
BBA CA	19SEC25	Business Ethics and Culture	Т	3	С	-	100	-	100	3	60
Mathematics	19SEC26	Financial Mathematics	T	3	J	-	100	-	100	3	60

Mathematics	19SEC27	Vital Statistics	Т	3	J	-	100	-	100	3	60
Sports	19SEC28	Physical Training	T	3	M	-	100	-	100	3	44
BBA CA	19SEC29	Modern World History	Т	3	С	-	100	İ	100	3	7
BBA CA	19SEC30	Art of the Modern World	Т	3	C	-	100	ı	100	3	7
Bioscience	19SEC31	Introductory Biology – I	Т	3	C	ı	100	İ	100	3	7
Bioscience	19SEC32	Introductory Biology Lab I	P	3	L	-	100	ı	100	3	7
Bioscience	19SEC33	Principles of Chemistry I	Т	3	C	-	100	ı	100	3	7
Bioscience	19SEC34	Principles of Chemistry I Lab	P	3	L	-	100	ı	100	3	7
English	19SEC35	World Literature II – Modern	Т	3	C	ı	100	İ	100	3	7
English	19SEC36	US History to 1877	T	3	C	-	100	-	100	3	7
English	19SEC37	Critical Trends and Issues in Recent World History	Т	3	С	-	100	1	100	3	7
Psychology	19SEC38	Psychology as Life skill	Т	3	С	-	100	ı	100	3	60
BCA	19SEC39	Spread Sheet Lab	P	3	M	-	100	-	100	3	120
BBA & ISM	19SEC40	Human Resource Management	Т	3	С	-	100	-	100	3	3